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ABSTRACT Management of wildlife populations often requires reliable estimates of population size or
distribution. Estimating abundance can be logistically difficult, and occupancy models have been used as a
less expensive proxy for abundance estimation. Another alternative is to use independent estimates of
home‐range size and mean group size to directly scale occupancy estimates up to abundance. We used
simulations to explore when scaling occupancy up to abundance is reliable, and as an example we applied an
occupancy approach to estimate abundance of wolves (Canis lupus) from roadside snow‐tracking surveys in
northern Wisconsin, USA, in 2016 and 2018. Estimates of wolf abundance were plausible and compared
favorably with independent estimates produced by territory mapping, and snow‐tracking data requirements
were lower than for territory mapping. Simulation results suggested that reasonable abundance estimates
could be obtained under some conditions but also that severe positive bias could result under other
conditions, especially when populations were small and dispersed, home range size was small, and areal
sampling units were large. Positive bias in abundance estimates occurs because of closure assumption
violations when tracks from a single wolf or pack are detected in >1 sample unit, and the sum of the sample
unit areas where tracks were detected exceed the sum of the home range areas. Bias was minimized when
sampling units were small relative to home range size or when sampling units were route segments that
approximate point sample units, and when home ranges were highly aggregated. We conclude that,
although caution is warranted when scaling occupancy estimates up to abundance, scaled occupancy models
can provide feasible and reliable estimates of abundance, assuming home range size and mean group size are
accurately known or estimated, sampling units are appropriately chosen, and covariates that aggregate home
ranges can be used to accurately predict occupancy probability. © 2021 The Authors. The Journal of Wildlife
Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.
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Estimating population size or trend is often a necessary and
primary objective of wildlife population monitoring pro-
grams. In some cases where collection of replicated count
data or capture‐recapture data is infeasible or prohibitively
expensive, management objectives can be met by instead
estimating the proportion of an area occupied by a species.
Estimating occupancy requires only spatially or temporally
replicated detection–non‐detection data, which often are
less expensive to collect than counts or capture‐recapture

data. Occupancy models (MacKenzie et al. 2002, Tyre
et al. 2003) are now widely used to estimate distribution or
as a proxy for abundance for a wide variety of taxa (Durso
et al. 2011, Falke et al. 2012, Adams et al. 2013, Chen
et al. 2013, Rich et al. 2016), or scaled up to directly esti-
mate abundance (Rich et al. 2013, Ausband et al. 2014).
Occupancy models account for the common situation where
a species may be present but undetected at a specific survey
site during a specific survey occasion, and thus help prevent
spurious conclusions about habitat relationships that result
from confounding species absences and species non-
detection (Tyre et al. 2003, Gu and Swihart 2004).
Occupancy (ψ) is a useful metric, but interpretation of ψ

depends on the specifics of a study design (Efford and
Dawson 2012, Latif et al. 2016, Steenweg et al. 2018).
With discrete sample units, ψ can be interpreted as the
instantaneous probability of patch occupancy (MacKenzie
et al. 2002), but often, especially for temporally replicated
surveys in continuous habitat, ψ represents cumulative or
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asymptotic probability of patch occupancy (Tyre et al. 2003,
Efford and Dawson 2012). Failure to carefully define oc-
cupancy can lead to misinterpretation and inferential errors
(Efford and Dawson 2012, Hayes and Monfils 2015).
Moreover, when individuals are distributed randomly on the
landscape, expected cumulative occupancy probability,
ψ( )E , is a function of the ratio of home range size to sample

unit size (R) and population density, and for a given pop-
ulation density, increasing R increases ψ( )E , and numerous
combinations of home range size, sample unit size, and
density can result in identical estimates of cumulative
occupancy (Efford and Dawson 2012: figure 2).
Given closure assumption violations and consequent dif-

ferent interpretations for occupancy probability, special care
is warranted when scaling occupancy up to abundance or
when using occupancy as an index for abundance or density.
Indices rarely scale linearly with abundance beyond some
narrow range (MacFarland and Van Deelen 2011, Steenweg
et al. 2018), and ψ has an obvious asymptote at 1 regardless
of any possible further increases in population density.
MacKenzie et al. (2006) suggested that when sample unit
size is chosen to match territory size of territorial species,
then the number of occupied units is virtually equivalent to
the number of territorial individuals or pairs. Although not
stated explicitly, in continuous habitat where sample units
are not closed to temporary emigration, that correspondence
likely depends on the temporal scale of sampling (Efford
and Dawson 2012, Steenweg et al. 2018).
If the number of occupied sites adequately describes the

distribution of home ranges (i.e., ψ is appropriately defined
and interpreted, and is unbiased), then population
abundance can be derived as ψ= ( ̅)/ ̅N Ax h where ψ is the
probability of occupancy in a sample unit, A is the total area
of the sample units (or the area study, if sample units cover
the entire study area), ̅h is the mean home range size during
the sampling period, and ̅x is the mean group, or pack size.
This approach is currently used to estimate abundance of
wolves (Canis lupus) in Montana and Idaho, USA (Rich
et al. 2013, Ausband et al. 2014). Scaling occupancy up
to abundance in this way obviously entails important
assumptions about territory size, group size, and group
cohesion (Rich et al. 2013, Ausband et al. 2014, Latham
et al. 2014).
Assuming that territory size and group size are known or

can be properly estimated, scaling occupancy to abundance
requires consideration of 2 questions: does ψ represent in-
stantaneous or cumulative occupancy and how can potential
bias from expected closure assumption violations be mini-
mized or mitigated? Scaling occupancy as ψ= ( ̅)/ ̅N Ax h
implicitly defines ψ as cumulative occupancy, or the pro-
portion of the landscape included in a home range. Because
closure cannot be assured, and features that mitigate or
minimize bias are not entirely controllable, it is also
important to identify scenarios where consequences of
violations are minimized, or where an occupancy abundance
approach might be inappropriate. For example, selection of
sample units is controllable, and large sample units should
exacerbate consequences of closure violations. Conversely,

landscape features and territory distribution are not con-
trollable, but if landscape features influence distribution
such that home ranges are clustered, then closure violations
should be less consequential than if home ranges are widely
scattered.
It is worth considering whether there are situations where

a closure assumption could be relaxed. One possible ap-
proach is to collect data in a robust design framework and
fit them to a dynamic occupancy model (MacKenzie
et al. 2003). This approach allows occupancy status in
sample units to change between primary periods and con-
siders initial occupancy probability ψ( )0 to be an unbiased
estimate of instantaneous occupancy that captures the dis-
tribution of home range centers. Spatial subunits could serve
as replicates, assuming the target species is mobile enough
that all subunits could conceivably be occupied during a
single visit (Kendall and White 2009). This assumption is
problematic in a continuous landscape, where mobile ani-
mals could be detected in adjacent sample units within a
single survey occasion. In this case, ψ0 probably is still closer
to cumulative occupancy than instantaneous occupancy,
especially when detection relies on persistent cues such as
tracks or scat. The equal availability assumption also is
violated when a home range intersects with only some
subunits of >1 sample unit.
Another possible approach is to use multiscale models,

where data are collected at temporal or spatial subsamples
nested within site or survey occasion (Mordecai et al. 2011,
Pavlacky et al. 2012, Whittington et al. 2015). In this
approach, ψ represents overall occupancy, and θ represents
local occupancy at a spatial subunit, or availability at a site
during a specific survey occasion. Efford and Dawson
(2012) suggest that, even when replication at a site is spatial
rather than temporal, a temporal context should be
considered, where ψ represents asymptotic occupancy and
ψθ represents instantaneous occupancy. The afore-
mentioned caveats about highly mobile individuals also
apply to multi‐scale models.

In Wisconsin, USA, wolf abundance has historically
been estimated by territory mapping and enumeration
of presumed wolf packs, and pack territories are
inferred from roadside snow‐tracking surveys, evidence of
breeding, telemetry locations, and aerial observations
(Wydeven et al. 2009). Assignment of observed tracks
into pack territories is somewhat circular because assign-
ments are made based on presumed territorial locations of
the different packs, but territories are inferred in part from
the location of the observed tracks. This enumeration is
regarded as an annual minimum over‐winter count, with
bounds defined by cumulative uncertainty about individual
pack sizes.

Although territory mapping has produced plausible esti-
mates of wolf abundance in Wisconsin, estimates rely on
somewhat subjective pack assignments, and likely deviate
from true abundance to an unknown and possibly variable
degree. Also, although estimates are presented as a narrow
range, uncertainty is not rigorously evaluated. Precise esti-
mates are desirable, but management decisions should
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reasonably account for all sources of uncertainty, rather than
treating estimates with unknown bias and uncertainty as
truth (Yoccoz et al. 2001). Accordingly, there is motivation
to develop an estimator that accounts for incomplete de-
tection, provides a rigorous estimate of uncertainty, and is
less reliant on uncertain pack assignments.
We conducted a simulation study to investigate bias in

occupancy and abundance approaches for estimating abun-
dance of wolves for various realistic scenarios in a con-
tinuous landscape where closure assumption violations
routinely occur. Our objectives were to use simulations to
identify scenarios where scaling occupancy estimates to
abundance resulted in minimal bias, and to illustrate a scaled
occupancy approach for estimating wolf abundance from
snow tracking data in northern Wisconsin, during winter
2016–2017 and 2018–2019. We evaluated a variety of
simulation scenarios, with varying densities, distribution
patterns, and sampling and modeling strategies, and we
predicted minimal bias in scenarios where closure assump-
tion violations were minimal or relatively inconsequential
(e.g., when home ranges are aggregated and the landscape
or portions thereof are essentially saturated) and when
sample unit sizes are appropriately chosen.

STUDY AREA

We analyzed snow‐tracking data from 2016–2019 collected
from Wolf Management Units 1 and 3 in northern‐western
Wisconsin, and from the extent of the known wolf range in
northern and central Wisconsin (Fig. 1). The known wolf
range comprised approximately 91,000 km2, although the
precise extent of the surveyed area varied annually, with
elevation varying from 177m at Lake Michigan to 595m at
Timms Hill. The area was approximately 68% forested,
19.3% cultivated or grassland, 4.3% residential or otherwise
developed, and 3% emergent wetlands. Northern Wisconsin
was glaciated and dominated by mixed forest and forested
wetlands, with common trees including pines (Pinus spp.),
maples (Acer spp.), birch (Betula spp.), and oaks (Quercus
spp.), whereas central Wisconsin was largely unglaciated
and agricultural, except for a sparsely populated area of
about approximately 7,100 km2, known as the Central
Forest Region, largely disjunct from the forests of northern
Wisconsin (Theil et al. 2009). Primary land uses throughout
the region were forestry, agriculture, and tourism. Common
large mammalian species included white‐tailed deer
(Odocoileus virginianus), American black bear (Ursus ameri-
canus), coyote (Canis latrans), wolf, red fox (Vulpes vulpes),
and beaver (Castor canadensis). Summers (Jun–Aug) were
generally warm and humid, with average summer temper-
atures of approximately 18°C, and a freeze‐free season of
approximately 100 days in the north. Winters (Dec–Mar)
were cold and snowy, with average winter temperatures of
approximately −11°C, and average annual snow cover per-
sistence from 140 days in the north to approximately
85 days in the south. Spring (Apr–May) and fall (Sep–Nov)
were typically cool, with variable precipitation, and with
occasional late or early frosts.

METHODS

Simulation 1: Areal Sample Units
We simulated data for a 180× 180‐km landscape, with an
additional buffer 2 times the diameter of the simulated
mean home range size to allow wolf movement in and out of
the study area. We placed wolves (N= 100 or 400) on the
landscape in packs with mean size 3.8 and maximum pack
size 8. About 15% of packs had only a single wolf (i.e.,
loners). Wolves in the same pack had identical home range
centers, and the simulation drew home range sizes from a
normal distribution with a mean of 100 km2 or 324 km2

with a standard deviation of 10. Thus, in our simulations
with large population and large home range sizes, the
landscape was nearly saturated with wolf territories. We
selected home range centers by gridding the landscape with
a resolution equal to μ/c , where μ was mean home range
size and c= 1.15 is a multiplier allowing some home range
overlap. Realized c is dependent on home range size and the
number and spatial arrangement of home ranges on the
landscape and may exceed 1.15 because simulated home
ranges are circular rather than square. We simulated 100
replicates of each abundance‐home range combination to
determine the value of c to use for inflating abundance es-
timates. We assigned selection probabilities to the gridded
study area, with some spatial heterogeneity deliberately
introduced, and selected home range centers without
replacement.
Once home ranges were established, we imposed a new

sampling grid, with either 100 km2 or 324 km2 resolution,
with 4 subunits per cell. We specified availability for de-
tection for different scenarios based on 1 of 6 wolf move-
ment models, which differed in the extent to which packs

Figure 1. Wolf Management Units 1 and 3 (black dotted lines) and total
extent of surveyed wolf range (gray solid lines) in Wisconsin, USA, in
2016–2019. Habitat classifications are derived from 2016 National Land
Cover Data (Yang et al. 2018).
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were cohesive and spatio‐temporally excluded other packs.
In the most realistic model (model 1), used in most of our
scenarios, we intersected the sampling grid with home
ranges and assigned availability probabilities for pack k (or
individuals in pack k) in the resulting home range‐sample

subunit fragments as θ α( ) = + ( )logit ppnlogj
k

j
k , where α

defines baseline availability when the entire home range k is

contained inside a single sample unit, and where ppnj
k is the

proportion of the home range contained in the jth fragment

of pack k, and α = 0.62 or 2.2, corresponding to θj
k = 0.65 or

0.9, respectively, when ppnj
k = 1. Availability of a pack

(when movements of individuals in a pack were completely
dependent: model 1a) or individual (when individuals could
move and be detected independent of other pack members:
model 1b) within home range fragment k in fragment j was

then defined as ∼ θ( )u Binj
k

j
k . Model 1b simulates a sce-

nario with little to no pack cohesion other than sharing the
same home range. Thus packs (or individuals) were available
with some probability in each subunit within their home
range (which might be part of >1 primary sample unit) in
each survey period. This is reasonable and realistic if avail-
ability is interpreted to be the production of sign such as scat
or tracks that may persist long enough to be detected in >1
location during the same survey occasion. In this case, the
resulting estimate should be close to cumulative, not in-
stantaneous occupancy probability. We also simulated
availability with three alternative models. The first is as
above, except that availability of packs (model 2a) or in-
dividuals (model 2b) was modeled with a multinomial
model ∼ θ θ θ{ … } ( { … })u u u MN, , , 1, , , ,k k

J
k k k

J
k

1 2 1 2 , where J is

the number of home range fragments available in the ter-
ritory of individual (or pack) k. Thus, packs or individuals
were available in only one home range fragment in any given
survey occasion. This model violates the equal availability
assumption of spatial replication but may be realistic if an-
imals move slowly around the home range. In the second
alternative (model 3), we first selected an initial pack loca-
tion randomly from within the home range, subject to the
constraint that the location must be ≥1 km from other
packs. Individuals from the pack were then allowed to de-
viate from this position based on a ( )MVN 0,25 movement
kernel. Thus, individuals within a pack could be separated
from each other by up to 1 km at each time step, but usually
were much closer together. Given the selected sample cell i
for each individual, individuals then were assumed to be
available (with probability θj

i ) in all J subunits of cell i, even

if some subunits were outside the home range, and were not
available in any other sample cell. This is a somewhat un-
realistic scenario, but it satisfies the movement and equal
availability assumption. Lastly, in the third alternative
(model 4), we first selected an initial pack location and
subsequent individual locations as described for model 3.
But, as with availability model 2, only a single location per
occasion was assumed. This model differs from model 2 in
that selected locations potentially are constrained by the
locations of other packs, and individual members of a pack
could, by chance, occupy different sample units or subunits.

In each sample cell, we simulated 0–5 surveys, with most
cells having 2–3 surveys. We drew survey effort from a

α β( = = )Beta 5, 2.5 distribution and represented effort
relative to maximal possible effort (e.g., the length of roads
surveyed relative to the maximum length in any sample
subunit). Given availability in sample subunit j in grid
cell i, we then simulated observations as ~ ( )y Bernoulli p

ijt ijt
,

where p
ijt
is detection probability in sample subunit j in grid

cell i at time t, ( ) = + ( )logit p a effortlog
ijt ijt0 , and where

ao =−0.845 or 1.099, respectively, represented relatively low
or high detection probability. For the static occupancy

model, we aggregated y
ijt
to ∑= ( )

=
y I y
it i

J

ijt1
i , where Ji is the

number of subunits in sample unit i, and I took the value 1
if the summation was >0.
When individuals have high movement rates and can

be detected in multiple sample units, either over time or
within the same sampling occasion, estimated ψ typically
represents cumulative use rather than instantaneous oc-
cupancy (Efford and Dawson 2012). This should espe-
cially be the situation when sample units are adjacent
grid cells and an individual's home range could con-
ceivably include portions of >2 grid cells. To try to
mitigate this scenario, we conducted a set of simulations
where we modeled availability with the most realistic
model (model 1) but sampled only in alternating grid
cells. We simulated 6 scenarios with abundance= 100 or
400, home range size= 225 km2, and sampling grid
size= 100, 225, or 324 km2. Abundance estimated by

ψ= ( ̅)/ ̅N Ax h then represents only abundance within the
sampled units, and must be scaled by /A ASA , where ASA

is the size of the sampled area, to estimate the pop-
ulation size. For the simulated cases, where the study
area was a uniform square area, this multiplier was ex-
actly 2. We conducted simulations in program R (R
Core Team 2018) and fitted models using the R package
runjags (Denwood 2016).

Occupancy Models
We fitted 3 different occupancy models to the simulated
data. The first was a single‐season occupancy model:

∼ ψ( )z Bernoullii

∼ ( )y Bernoulli z p
it i it

( ) = + ( )logit p a effortlog ,
it it0

where zi is the latent occupancy state of sample cell i. This
model should estimate cumulative occupancy probability and
potentially result in overestimates of abundance for many
scenarios. To scale occupancy up to abundance, we first esti-
mated the area occupied as ∑ ψ ×

=
cellsize

i

K
i1
, where K was

the number of cells, then divided by mean territory size to
estimate the number of non‐overlapping packs that would fit
into the total area occupied (Npacks), then multiplied Npacks by
the mean pack size (μpack). We accounted for uncertainty by
specifying reasonable, empirically informed priors to the
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model ∼μ α( =Gammapack β= / ̅ )x1,000, 1,000 pack , where

̅ =x 3.8pack was mean pack size estimated from road‐side
snow‐tracking data and aerial pack observations (Wiedenhoeft
et al. 2018); and mean home range ( ∼μ δ) ( )N , SDHR HR HR ,
where δHR was a simulation value, and SDHR= 10, an em-
pirical value. To account for territory overlap, we inflated N
packs with an estimate of home‐range overlap (c) as described
above.
The second model was a dynamic occupancy model

specified by:

∼
⎧

⎨
⎩

ψ

ε γ

( ) =

( ( − ) + ( − ) ) >
z

Bernoulli i

Bernoulli z z i

, 1

1 1 , 1
it

it it

0

∼ ( )y Bernoulli z p ,
ijt it ijt

where p
ijt

was a function of effort, as described above, ε was
the extinction probability (probability that an occupied cell
becomes unoccupied), and γ was the colonization probability
(probability that an unoccupied cell becomes occupied).
We scaled up occupancy (ψ0) to abundance as described
above. Because we assumed that the proportion of cells
occupied in each time period was constant (even though
occupancy of an individual cell can change), we imposed a
stationary Markov process (MacKenzie et al. 2006) such that
ε γ ψ ψ= ( − )/1 , which is reasonable, provided that ψ is not
too low and γ is not too high.
The third occupancy model was a multiscale model

(Mordecai et al. 2011) where

∼ ψ( )z Bernoullii

∼ θ( )u Bernoulli zit i

∼ ( )y Bernoulli u p ,
ijt it ijt

and where p
ijt

was defined as before, uit was the latent use
state in cell i at time t, and θ was the probability that a cell

was being used at time t (not that this definition is different
than that described for the data generating models). We
scaled up the product ψθ (Efford and Dawson 2012) to
abundance as described above.

Simulation 2: Linear Sample Units
In the previous section, we generated data generically for
areal sample units without describing how such data might
be collected. In reality, data often are collected along
transects, such as road segments. If defined appropriately,
road segments may approximate point sampling units and
possibly mitigate biases expected with areal sampling units
(Efford and Dawson 2012). We conducted a series of sim-
ulations where we used the occupancy model of Crosby and
Porter (2018) to generate data from simulated survey routes,
and we fitted the simulated data to several models that used
either areal grid cells or 1‐km route segments (to approximate
points) as sample units (Table 1). The Crosby and Porter
(2018) model explicitly separates the probability of track‐
laying δ from the probability of occupancy (or use), and
models the former as a function of the number of days
elapsed since the last snowfall event, assuming that track‐
laying accumulates, and tracks persist over time. Because
tracks are laid over time, occasions do not represent points in
time; therefore, we did not impose any spatio‐temporal ex-
clusion among packs. Surveys occurred 1–3 days after a
snowfall event, and the probability δj of observable tracks
being laid was a function of time elapsed since the last
snowfall event, and was also a Markovian process where
track‐laying was more likely at segment i if tracks were
also laid at segment i− 1 (Crosby and Porter 2018). For
the purpose of simulating data, we defined ψi and θij as
in Crosby and Porter (2018); ψi was the probability
that a transect passed through ≥1 home range, and
θ = ( = )P u 1ij ij was the probability that route segment j on
route i intersected ≥1 home range. In our simulated data,
=u 1ij when a segment j in sample unit i intersected a home

range. The model to fit the data specified spatial auto cor-
relation in θij as a conditional autoregressive (CAR) process

Table 1. Sampling design for models fitted to simulated occupancy data. All simulated data were collected along routes based on the model of Crosby and
Porter (2018) and were translated to grid‐level data where necessary. Grid cells were either 100, 170, or 350 km2 and routes were 40 km long. Grid sub‐cells
were either 4 or 9 sub‐divisions of the grid cell sample units.

Model Sample unit Sub‐unit Description and assumptions

1 Grid cell None Simple occupancy model.
2 Route segment None Simple occupancy model.
3 Grid cell None Spatial conditional autoregressive (CAR) process on occupancy probability (ψi),

with adjacent cells as neighbors.
4 Route segment None Spatial CAR process on ψi , with adjacent route segments as neighbors.

5 Grid cell Grid sub‐cell Spatial replicates (sub‐units) nested in temporal replicates. Occupancy (use) status

can change, with use probability (θ), but it is assumed is that if a cell is occupied,
then all spatial subunits are occupied.

6 Route Route segment Same assumptions as model 5.
7 Grid cell Grid sub‐cell Temporal replicates nested in spatial replicates. Occupancy status (zi) cannot change, but

only some subunits are assumed to be occupied, with subunit use probability θij .

8 Grid cell Route segment Same assumptions as model 7.
9 Route Route segment Same assumptions as model 7.
10 Grid cell Route segment Identical to model 8 but with spatial CAR process on subunit use probability (θij ).

11 Route Route segment Identical to model 9 but with spatial CAR process on θij .
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where θ α ρ( ) = +logit ij ij0 , where ρij was given an intrinsic

CAR prior, with weights equal to 1 for neighbors and 0
otherwise (Crosby and Porter 2018). Detection probability
was high (p= 0.85), given =u 1ij . To investigate the effects of
increased effort, we simulated either 30 or 50 observation
routes, each 40 km long, and either 3 or 6 survey occasions.
We generated 100 data sets for each simulated scenario, and
fitted the data to 11 different models, with either grid‐based
or route segment‐based sample units (Table 1). We carried
out simulations in program R (R Core Team 2018) and
fitted models using the R package NIMBLE (de Valpine
et al. 2019).
We simulated scenarios for a 17,000‐km2 study area where

the square sampling grid size was either 100, 170, or 350 km2,
the number of simulated home ranges was either 20, 40, or 80,
and home range placement was clustered based on a simulated
covariate whose value was moderately spatially correlated. We
generated home range size to approximate empirical ob-
servation from a gamma distribution with mean=170km2

and variance= 2,890. Mean pack size was 4, and we use an
equal probability multinomial distribution to distribute the
wolves among the modeled packs. Thus, simulated population
sizes were exactly 80, 160, or 320 individuals. We estimated

abundance as ∑θ ψ= ̅ / ̅
=

N x A h
i

I
i i1

, where I is the number of
sample subunits. We expected the most severe positive bias in
cases where sample units were large and where abundance was
low (because potential bias in occupancy estimate is greatest
under these conditions) and when home ranges were small
(because the consequences of positive bias in occupancy esti-
mates are most consequential when more home ranges can be
packed into the landscape).

Application 1: Wisconsin Wolf Management
Zones 1 and 3

We conducted an analysis of roadside snow‐tracking data
collected during winter 2016–2017 in Wolf Management
Zones (WMZ) 1 and 3 in Wisconsin (Fig. 1). Snow
tracking occurred in blocks conveniently defined by rivers
and roads, but effort recorded at the tracking block scale is
not easily translated to consistent sample grids unless the
effort is spatially referenced. We digitized survey routes in
WMZ 1 and 3 for 2016–2017 so that we could define
effort (km traveled) at any scale or use survey routes
themselves as sample units. We spatially referenced ob-
servations at locations where wolves entered, exited, or
crossed roadways. Multiple surveys in tracking blocks
usually were separated by ≥7 days. We defined grid cells
independently from tracking blocks, and survey periods as
the first 2 weeks (day 1–day 14) and last 2 weeks (day
15–end of month) of each month from 15 Nov 2016–31
Mar 2017, for 9 occasions. Consequently, the final occa-
sion in each month was marginally longer than the first,
and a survey occasion in a grid cell could conceivably
include >1 survey.
We fitted each of the 3 occupancy models (above), without

covariates, to the snow tracking data. We modeled
detection probability as a function of effort, where effort was

the log‐transformed total length of survey routes in a cell.
To scale occupancy estimates up to abundance, we used

∼μ ( )N 172.5,17.7HR , based on global positioning
system observations of 36 packs from 2015–2017, and

∼μ ( )N 3.9,0.106packsize , based on pack size inferred from

tracks observed from 230 putative packs in the winter of
2016–2017 (Wiedenhoeft et al. 2018). Territory overlap was
not known, so we did not adjust estimates to account for
possible pack overlap as we did in the simulations.
We also fitted models 1, 7, and 8 (Table 1) to the above

snow tracking data. We included road density and forest
cover covariates to predict ψi, and modeled detection
probability as a function of effort (for areal sample units).
For models 7 and 8, no effort covariate was required
because sample sub‐units were all 1 km in length. To
scale occupancy estimates up to abundance, we used
prior distributions of ∼μ ( / )Gamma 100,100 172.5HR and

∼μ ( / )Gamma 1500,1500 3.9packsize ; these are almost iden-
tical to the normal distributions previously specified.

Application 2: Wisconsin Range‐Wide
Abundance Estimate
We also used snow‐tracking data from winter 2018–2019 to
estimate wolf abundance for the entire range of wolves in
Wisconsin, where winter snow‐tracking occurred (Fig. 1).
Tracking occurred as described above, and we directly re-
corded or digitized tracking survey routes post hoc so that we
could quantify survey effort. We used a 100‐km2 hexagonal
grid to delineate sample units and derived 2 landscape co-
variates (forest and agriculture) from National Land Cover
Data (Yang et al. 2018). We fitted 9 static occupancy
models (Table 2; model code available in Supporting
Information) with a detection model that included a con-
stant detection parameter, an effort covariate (log of tracked
distance), or a sample unit by occasion random effect. We
modeled occupancy probability ψ as constant, a function of
landscape covariates and road density, or with a first‐order
spatial random effect. Occasions were 7‐day periods
from 1 Nov 2018 to 11 Apr 2019, which resulted in 24
sampling occasions. As described previously, we scaled oc-
cupancy up to abundance using ∼μ ( )N 172.5,17.7HR

Table 2. Occupancy models fitted to winter 2018–2019 range‐wide wolf
tracking data in Wisconsin, USA. Landcover covariates were derived from
2016 National Landcover Data. In the detection model, effort= log(km
surveyed), and εij are site‐ and time‐specific random effects. For the oc-
cupancy model, road= km of road/km2, ag= agriculture and developed
land cover, for= forest land cover, and CAR is a conditional autoregressive
spatial process.

Model Detection sub‐model Occupancy sub‐model

1 effort+ εij constant

1b effort constant
2 constant constant
3 effort+ εij for+ ag+ road

3b effort for+ ag+ road
4 effort+ εij CAR

4b effort CAR
5 effort+ εij for+ ag+ road+CAR

5b effort for+ ag+ road+CAR
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and ∼μ ( )N 3.9,0.106packsize . We compared the competing

models using the Watanabe‐Akaike Information Criterion
(WAIC; Watanabe 2010, Hooten and Hobbs 2015). Wolf
capture and collaring followed the Wisconsin Department
of Natural Resources' protocol for safe and humane capture,
handling, and sampling of gray wolves approved by
the Department's Animal Care and Use Committee
(GrayWolf_SOP_11).

RESULTS

Simulation 1: Areal Sample Units
Abundance was overestimated in most but not all scenarios,
with estimates >3 times the true values in the most extreme
case. Although reliability of abundance estimates was highly
dependent on simulated scenarios, several clear patterns
emerged (Fig. 2). First, given the same value for true
abundance, larger sampling grid cells resulted in larger es-
timates of abundance. Second, regardless of true abundance,
there was positive bias in estimates when home range size
was small, and positive bias was exacerbated when sample
units were large. Third, abundance was nearly always
overestimated when true population size was small, but
when population size was large, positive bias occurred only
when home range size was small. Fourth, as expected,
abundance estimates from the static occupancy model were
always greater than estimates from the dynamic model.
Also, estimates from the dynamic model generally were
larger than estimates from the multi‐scale model. Fifth,
decreasing detection probability resulted in fewer detections
across the spatial replicates and consequently resulted in
lower abundance estimates and lower, but still substantial,
positive bias (Fig. 3). Conversely, simulating greater
movement rates (higher availability across the home range)
resulted in larger abundance estimates and greater positive
bias (Fig. 3). Restricting sampling to alternating grid cells
increased uncertainty and only minimally reduced bias
(Fig. S1, available in Supporting Information).
When packs were not cohesive (availability of individuals

was independent of other pack members), there were more
detections and consequently greater precision, but also
greater bias (Fig. S2, available in Supporting Information).
For availability model 3 (simulating equal availability within
all subunits of occupied cells), the static occupancy model
clearly estimated cumulative occupancy, whereas absolute
bias was minimal (<0.1) for the dynamic and multi‐scale
models (Fig. S2). Bias was smaller for the dynamic model,
but precision was better for the multi‐scale model (Fig. S2).

Simulation 1: Linear Sample Units
When we simulated observation data from road segments, a
hierarchical sampling design where route segments served as
sub‐samples approximating point samples, in some cases
(models 8 and 9; Table 1) greatly mitigated the extreme
positive bias evident when sample units were strictly areal.
Model 8 performed best, where route segments were sec-
ondary sample units embedded in grid‐cell primary sample
units. Under this scenario, mean relative bias in posterior
means was <0.1 in most cases, except when population size

and home range size was small and sampling unit size was
large (Fig. 4). Model performance was somewhat poorer
when we modeled route segment use with a spatial CAR
process than when use probability was not dependent on
adjacent segment use. Model 10 (Table 1) was identical to
model 8, except that segment use included a spatial CAR
model. There was greater positive bias from model 10 than
from model 8, when population size was small, and greater
negative bias when population size was large, and home
range size was more influential (Fig. S3, available in
Supporting Information).
Previously we showed that when the closure assumption

was severely violated, greater sampling effort resulted in
greater positive bias. The same was true for many of the
scenarios considered in this section but not universally so. In
particular, bias did not increase with sampling effort for
designs where route segments were the spatial replicates,
even when the primary units were grid cells (Fig. S4,
available in Supporting Information).

A B

C D

Figure 2. Relative bias in estimated abundance derived from 3 different
occupancy models for various combinations of simulated small (A, C) or
large (B, D) sample units (plot), small (A, B) or large (C, D) home ranges
(HR), and sparse and dense populations, for simulated pack‐dwelling
wolves. Dashed line denotes zero bias, and error bars the range of bias
observed across all simulations.

o

A B

Figure 3. Relative bias in estimated abundance derived from 3 occupancy
models when detection probability (p) was high or low, and individuals
within simulated packs were moderately (A) or highly (B) mobile within
their home range. In each simulated scenario, true home range size and
sample grid size was 225 km2 and true abundance was 200 individuals in
packs with mean size= 3.8 individuals. Dashed line denotes zero bias, and
error bars the range of bias observed across all simulations.
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Application 1: Wisconsin Wolf Management
Units 1 and 3
As was the case for simulation results, estimates of wolf
population size in WMZ 1 and 3 increased when the unit
size of the sampling grid increased, although only slightly
(Fig. 5; Table S1, available in Supporting Information).
Estimates from the dynamic model also were slightly
smaller than for the static occupancy model, as expected,
and estimates from the multi‐scale model were much
smaller than for either of the other 2 models. For the static
and dynamic models, 95% credible intervals included the
minimum count of 499–512 for WMZ 1 and 3 combined,
regardless of the sampling grid size (Fig. 5). Estimates from
the multi‐scale model were substantially lower than the
minimum count, and the minimum count was included in
the 95% credible interval (CrI) only when the sampling grid

cells were large. Also, convergence ( ˆ <R 1.1) was more
difficult to achieve with the multi‐scale model than with the
other 2 models. When we fitted data from only a subset of
grid cells to the models, abundance estimates generally were
marginally reduced compared to estimates from the full
dataset (Fig. 5), but posterior means varied by as much as
20%, depending on which specific grid cells were selected.
For models fitted to wolf tracking data from WMZ 1 and

3, estimated population size was largest for the standard
occupancy model, and estimates increased with increasing
sample unit size (Fig. 6). For the multi‐scale model with
areal sub‐units, the estimate of population size also in-
creased with grid cell size, and the estimate was lower when
there were 9 as opposed to 4 spatial sub‐units. The model
with 1‐km road segments representing spatial subunits
(to approximate points sample units), estimated the lowest

overall population size (unrealistically low) but was least
sensitive to the size of the primary sample unit.

Application 2: Wisconsin Range‐Wide
Abundance Estimate
For wolf data from winter 2018–2019, the model with the
lowest WAIC value included an effort effect on detection
probability and landscape covariate effects and a spatial
CAR effect on occupancy probability (model 5b in Table 2).
The correlation parameter of the spatial CAR effect did not
adequately converge, however, and thus we present results
from the second best‐supported model (model 3b in
Table 2), which dropped the CAR effect. Detection prob-
ability was positively related to effort (αlogeffort = 0.85; 95%

CrI= 0.72–0.99). Occupancy probability was positively re-
lated to forest cover (βforest = 0.93; 95% CrI= 0.47–1.45)
and negatively related to agricultural and developed land
(βag =−0.8; 95% CrI=−1.19–−0.41) and road density

(βroad =−1.13; 95% CrI=−2.04–−0.29). The abundance
estimate (mode; 95% CrI) was 1,047 (835–1,333). The
range‐wide count for winter 2018–2019 was 914–978
wolves (Wiedenhoeft et al. 2019).

DISCUSSION

Occupancy estimates are used as alternatives to abun-
dance estimates because they obviate the need to obtain
individual identifications, and can effectively integrate
various data types into a single analysis framework
(MacKenzie et al. 2006, Pacifici et al. 2017). Interpreting
surrogates or indices as accurate estimates of abundance
warrants caution (MacFarland and Van Deelen 2011,
Steenweg et al. 2018), and our results suggest that the
same is true when explicitly scaling occupancy estimates

A

B

Figure 4. Relative mean bias in estimated population size for the
simulation scenario where parameters were estimated from a multi‐scale
occupancy model where sample units were linear road segments nested in
areal grid cells. In A, simulated population size (pop) was small (80
individuals in 20 packs). In B, mean territory size (HR) size was 170 km2 in
all scenarios. Dashed line denotes zero bias, and error bars the range of bias
observed across all simulations.

A

B

Figure 5. Abundance estimates for wolves in Wolf Management Zones
(WMZ) 1 and 3 in northern Wisconsin, USA, winter 2016–2017, scaled
up from 3 different occupancy models, when sampling occurs in a complete
grid (A) or only in alternating grid cells (B). Error bars represent 95%
highest probability density credible intervals, and dashed lines represent
lower and upper limits of the summed minimum count, based on territory
mapping, for WMZ 1 and 3.
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up to estimate population abundance. MacKenzie et al.
(2006:42) stated that when territorial animals are sur-
veyed, and size of the sample units matches territory size,
then the number of occupied sites is “virtually equivalent
to estimates of the number of territorial animals or pairs,”
and this assumption underlies occupancy‐based estimates
of abundance (Rich et al. 2013, Ausband et al. 2014).
Under reasonable scenarios of possible movement within
territorial home ranges, our results suggest that the as-
sumption that the number of occupied areal sample units
equates the number of occupied territories holds only
under certain relatively narrow conditions, and those
conditions are not entirely controllable. Instead, reliability
of occupancy‐abundance estimates is sensitive to mean
home range size, arrangement of home ranges, sampling
grid cell size, and actual abundance. Although we pri-
marily discuss scaling occupancy to abundance of in-
dividuals, an intermediate step is scaling occupancy to
abundance of packs. Concerns about bias apply equally to
both cases.
The fundamental reason for positive bias in occupancy

estimates is violation of the closure assumption. Movements
of individuals among sample units, especially when sample
units constitute a continuous grid, leads to estimation of
cumulative use rather than instantaneous occupancy (Efford
and Dawson 2012). Cumulative probability of occupancy
(or the proportion of the area used) is not the problem. It
should be the correct metric, and the claim by MacKenzie
et al. (2006:24) that the number of occupied cells equals
the number of home ranges of territorial animals should be
approximately correct, if cell size equals mean home range
size, and crucially, if home ranges are arranged with no

interstitial spaces. When home ranges are dispersed with
substantial interstitial spaces (e.g., when population density
is low), then detections within a single home range can
occur in >1 adjacent cell, and what is estimated is the
number of sample units that contain any portion of a home
range (Fig. 7), which is greater than the number of cells that
contain a home range center. Conceivably, a pack whose
home range is centered on the boundary of 4 sample units
could be detected in each of adjacent units, and resulting
estimated area occupied could be 4 times the home range
size. The positive bias in the occupancy estimate is ex-
acerbated when those sample units are excessively large. Bias
is also exacerbated when detection probability is high, be-
cause a single pack is more likely to be detected in multiple
sample units. Restricting the number of sample units so they
are non‐adjacent only marginally mitigated the bias because
movement in and out of sample units results in negative bias
in detection probability, or, for designs with spatial repli-
cation, incomplete availability across spatial replicates re-
sults in the same issue (Kendall and White 2009).
Use of spatial replicates to collect robust design data and

estimate abundance from ψ0 or ψθ also did not adequately
mitigate bias, in most cases. In principle, ψ0 should estimate
instantaneous occupancy, and ψθ should exclude the unused
portion of primary sample units from the estimated area oc-
cupied. Indeed, these estimates resulted in minimal bias in the
scenario where individuals were available for detection in all
subunits of the sample unit they occupied at a given occasion,
and not in subunits of adjacent cells. Such a scenario is largely
unrealistic when sample units form a comprehensive grid.
Home ranges will often straddle the boundaries of multiple
adjacent sample units, with consequent positive bias almost
inevitable (Hayes and Monfils 2015), unless the landscape is
largely saturated.
The consequences of closure assumption violations de-

pended on home range size, population size and dispersion,
and sample unit size, only the latter of which is controllable.
Positive bias in occupancy estimates is more consequential
for abundance estimates when home ranges are small be-
cause more small than large home ranges fit into the esti-
mated area occupied. Smaller home ranges do not preclude
an occupancy approach to abundance estimation, but that
situation allows less room for error in selection of sample
units.
Association of increasing positive bias with larger sample

unit sizes and smaller home range sizes seems at odds
with findings of previous investigations (Efford and
Dawson 2012, Hayes and Monfils 2015) where occupancy
estimates increased as the ratio of home range size to sample
unit size increased. Efford and Dawson (2012) did not in-
vestigate scenarios with comprehensive sample unit cov-
erage (e.g., a continuous grid), as in our scenarios. Hayes
and Monfils (2015) concluded increasing cumulative occu-
pancy as home range size increased, but their definition of
positive bias depended on their definition of true occupancy,
apparently instantaneous occupancy, which would not
change with home range size. Logically, when sample unit
size is much larger than territory size, a single group or

A
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Figure 6. Occupancy abundance estimates for wolves in Wolf
Management Zones (WMZ) 1 and 3 in northern Wisconsin, USA,
winter 2016–2017. The estimates are from a simple static model (A); a
multi‐scale model where we modeled use at 4 (B) or 9 (C) sub‐divisions of
each primary sampling grid cell; and a multi‐scale model where sub‐units
were 1‐km survey route segments, to approximate point sample units (D).
Error bars represent 95% credible intervals, and the 2 dashed lines
represent the lower (499) and upper (512) bounds of the minimum count
for WMZ 1 and 3.
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individual occupying a sample unit should lead to inflated
estimates of the amount of occupied landscape (Fig. 7). In
the extreme, a single sample unit that includes the entire
study area is occupied with probability 1 if a single in-
dividual is detected. In that case, the estimate of population
size is completely determined by the number of territories
that can fit in the landscape, and the mean group size. The
smaller number of large home ranges that can fit in the
landscape thus imposes an upper limit on positive bias that
is much lower than the limit imposed by small home ranges,
even when sample unit size matches home range size in
both cases. Of course, increasing home range overlap in-
creases the imposed upper limit.
Given the results of our findings of positive bias in many

scenarios, the logical consistency of observed positive bias in
occupancy and abundance estimates when sample units are
continuous, and the various ways that different home‐range
and sample unit configurations can result in identical oc-
cupancy estimates (Efford and Dawson 2012), it seems
counter‐intuitive that scaling occupancy to estimate abun-
dance of wolves in Wisconsin and Montana produces rea-
sonable and plausible estimates (this study, Rich et al. 2013,
Montana Fish, Wildlife, and Parks 2018). Nevertheless,
there are several reasons why these real‐world applications
work. In the simulations, positive bias was greatest when
true population size was small and sample grid cell size was
larger than home range size, and when home range size was
small, regardless of grid cell size. When population size is
small, closure assumption violations can result in occupancy
of multiple adjacent cells by a single group or individual
(Fig. 7). The same is true at high density, but, crucially,
when territories nearly saturate the landscape, closure as-
sumption violations are less consequential, and tend to
offset each other for adjacent sample units. In both
Wisconsin and elsewhere, it is likely that wolf home ranges
are aggregated in the highest quality habitat where mortality
risk is lowest, to the extent that these areas are nearly sa-
turated (Mladenoff 2009, O'Neil et al. 2017). Montana uses

a large (600 km2) sampling grid resolution, multiple state‐
wide observation data sources, and informative landscape
covariates to predict occupancy of wolves and scale up to
abundance (Rich et al. 2013, Montana Fish, Wildlife, and
Parks 2018), and most occupied sample units are aggregated
in the western part of the state (Rich et al. 2013: figure 1).
Our analysis of range‐wide wolf abundance in Wisconsin for
winter 2018–2019 also suggested that informative covariates
for ψ mitigated potential positive bias, and that the
northern Wisconsin landscape is nearly saturated with wolf
territories. Consequently, our abundance estimate was rea-
sonably close to the minimum count derived for that winter.
Saturation results in a distribution with minimal interstitial
spaces (Fig. 7C), where closure violations are of minimal
consequence. Landscape features influence distribution,
with 2 consequences that both mitigate potential positive
bias. First, wolf detections are most likely in sample units
with favorable landscapes, so closure violation is less likely.
Second, landscape covariates lead to better prediction in
sample units without detections.
Because the abundance estimate (of either packs or in-

dividuals) is a post hoc adjustment of an occupancy estimate,
the primary source of potential bias is the occupancy esti-
mate. Scaling relies crucially on accurate estimates of home
range features, however, and those features can exacerbate
bias, in some cases. In our simulations we considered a
relatively narrow range of non‐overlapping home range
sizes, reasonable for wolves in Wisconsin and the Great
Lakes region (Wiedenhoeft et al. 2018), and we considered
only circular home ranges. We expect that the same general
patterns apply for larger home ranges, and larger sample
unit sizes. For example, there is not evident extreme bias in
the Montana estimates (Montana Fish, Wildlife, and
Parks 2018), where sample units and home ranges are nearly
twice the size of the largest we considered here. In reality,
home ranges may be highly variable in size and shape, and
implications for occupancy abundance estimates are not
entirely clear. Although additional simulations would be

A B C D

Figure 7. Overlap of hypothetical home ranges with multiple sample units. The solid grid lines depict adjacent sample units, dashed lines depict spatial
replicates, circles depict home ranges with the same area as the grid cells, and points represent home range centers. In A, 2 home ranges overlap 8 grid cells,
thus occupancy is 0.5, and the estimated number of territories (based on the number of occupied cells) is 4 times the true value. In B, the sample cell size is
quadrupled, but the number of home ranges is unchanged. In this case occupancy is 0.75 and the estimated number of home ranges is 12, or 6 times the true
value. In C, the cell size is the same as in A, but the number of home ranges is increased, so that that it is more likely that adjacent cells actually contain a
home range center. In this case occupancy is 0.69, and bias in the estimated number of home ranges is reduced to 11/8, or 1.38 times the true value. In D,
there are again 8 home ranges, but they are less aggregated than in C. In this case occupancy is 0.94, and the number of estimated home ranges is 1.9 times
the true value.
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useful, greater variability in home range sizes should not
generate additional bias but might increase uncertainty in
estimation of mean home range size that propagates into the
abundance estimate. If home ranges sizes vary substantially,
either spatially or based on habitat features, it may be nec-
essary to incorporate variation in the home range model
more rigorously. Similarly, we see no reason that irregular
home range shapes should greatly influence bias, although
we suggest that when home ranges are highly irregular, the
number of home ranges that fit into the landscape may be
decreased. For example, a home range described by a
maximum convex polygon may contain area that is not used
by a pack, but is effectively co‐opted from use by another
pack. We suggest that in cases with highly irregular home
range shapes, the mean home range size should be calcu-
lated including such unused area, rather than strictly using a
home range model such as a kernel density estimator. We
also simulated a relatively small range of abundances, with
little or no home range overlap. We do not think that the
absolute size of the population influences bias as much as
the distribution of the population; a situation with highly
dispersed packs and extensive interstitial space is more
subject to positive bias than a situation where packs are
clustered. Overlapping home ranges probably do not influ-
ence occupancy estimation itself (other than the fact that
overlapping home ranges take up less space than dispersed
home ranges) but obviously have implications for scaling
occupancy to abundance.
Although real‐world applications produced plausible an-

swers (this study, Rich et al. 2013, Montana Fish, Wildlife,
and Parks 2018), it is worth reiterating that in simulations,
positive bias was greatest when true abundance was small.
Recovery plans for species listed under the Endangered
Species Act may include specific numeric goals, and positive
bias in the estimators could very easily lead to erroneous and
consequential conclusions about species recovery, when the
population is small and home ranges are widely scattered.
On the other hand, it is encouraging that rigorous density
estimates from a spatial capture‐recapture model, which are
not subject to closure assumption violations in the same way
that non‐spatial models are (Royle et al. 2014), and esti-
mates from an occupancy model for a low‐density carnivore
resulted in very similar management recommendations
(Linden et al. 2017).
In many estimation problems, incorporating multiple

sources or multiple types of data can improve precision of
estimates. For example, data on individual identities or
telemetry locations for some individuals improve estimates
from spatial capture‐recapture or spatial count models
(Chandler and Royle 2013, Sollmann et al. 2013), multiple
sources of occupancy data expand the scope and precision of
occupancy models (Pacifici et al. 2017), and integration of
multiple data types into population models improves esti-
mates or permits estimates of otherwise inestimable pa-
rameters (Schaub and Abadi 2011, Horne et al. 2019).
Although implementation is beyond our present scope, we
briefly mention 2 data sources that possibly could be in-
corporated in our approach, either to improve precision or

to reduce bias. The first is observations from motion‐
sensitive cameras, which should be relatively straightforward
to incorporate by modifying the observation model. The
second is the number of wolves detected at each set of ob-
served tracks, which seems less straightforward. Perhaps
informally, such counts could mark or partially mark packs
and identify when packs cross over sample unit boundaries,
thereby allowing data thinning to possibly mitigate closure
violations. More formally, marked tracks might be fitted in
a joint occupancy capture‐recapture model, where the
capture‐recapture model estimates the number of packs, and
the occupancy model either estimates occurrence probability
(our current model) or pack abundance, if modeled as a
Royle‐Nichols model (Royle and Nichols 2003). We are
skeptical of such a joint approach, for 2 reasons. First, it is
unlikely that the number of tracks reliably and objectively
identifies individual packs. Second, the key assumptions of
the Royle‐Nichols model (detection varies with abundance,
independent detections) are very likely to be violated with
wolf tracking data.
Given the real potential for positive bias in abundance

estimates described here, outside of a narrow set of cir-
cumstance, it seems advisable to collect information about
individual identifications if possible, to estimate abundance
directly. Because such data are typically more expensive to
collect than detection–non‐detection data, there is strong
motivation to find ways to use the less expensive data for
management decisions. We suggest considerable caution
when scaling occupancy estimates to abundance based on
mean territory size and mean groups size. In the case of
Wisconsin and Montana, other abundance estimates were
available, where the precise extent of bias is unknown but
probably not extreme (i.e., it is unlikely that index counts
are 2 times the true population size). Thus, there is a basis
for judging, in those specific cases, that abundance scaled up
from occupancy estimates are highly unlikely to suffer from
the extreme positive bias demonstrated for some simulation
scenarios. Montana and Wisconsin also plausibly meet the
narrow set of circumstances where occupancy reliably scales
to abundance. Of course, scaling occupancy up to abun-
dance also relies crucially on accurate estimates of mean
home range size and mean pack size, which may be density‐
dependent, and are not generally obtainable from
detection–non‐detection data.
Alternatively, in some cases it may be reasonable to

abandon management based on numeric goals that require
abundance estimation, and instead focus on distribution
goals. Given that abundance and occupancy estimates can
result in similar management recommendations (Linden
et al. 2017), and given the reduced effort and expense of
collecting detection–non‐detection data as opposed to
capture‐recapture data, it may suffice to develop goals based
on where occurrence is desirable. Management could then
target actions to maximize occupancy probability in pre-
ferred areas.
Managing for occupancy or distribution may be logistically

more feasible than making potentially problematic as-
sumptions to estimate abundance from occurrence data, but
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it may not be a politically or socially feasible goal for a
species like wolves. Wolves in the Upper Great Lakes have
been listed under the Endangered Species Act as federally
endangered for most of the last several decades
(Refsnider 2009, U.S. Fish and Wildlife Service 2019), and
federal delisting criteria and state management plans include
specific numeric population targets (Wisconsin Department
of Natural Resources 1999, U.S. Fish and Wildlife
Service 2019). Ensuring that delisting criteria or numeric
management goals are met requires that either a population
distribution goal is framed in such a way as to guarantee that
meeting the distribution goal also meets the population
numeric goal, or that population size is directly estimated.
Territory mapping from snow‐tracking and ancillary in-
formation is one approach to abundance estimation
(Wydeven et al. 2009), and scaling occupancy to abundance
is an alternative approach that can provide plausible esti-
mates under certain circumstances (this study, Rich
et al. 2013, Montana Fish, Wildlife, and Parks 2018). The
former approach requires extensive tracking, enumeration of
wolves from tracks, and somewhat subjective assignment of
all tracks into presumed pack territories. The latter approach
requires less tracking effort than territory mapping and does
not require subjective pack assignments, but it does require
independent estimates of mean pack and home range size,
and potentially is subject to positive bias with small and
scattered populations. Territory mapping may be an ap-
propriate method for small and scattered populations, but
where reasonable and justifiable (as in our Wisconsin
example) the scaled occupancy approach is preferable be-
cause it avoids the potential subjectivity of territory assign-
ments and provides a rigorous and honest estimate of
uncertainty.

MANAGEMENT IMPLICATIONS

Occupancy models are a conceptually attractive, and po-
tentially cost‐effective alternative to capture‐mark‐recapture
methods for providing information about abundance or
distribution. If distribution estimates are adequate for
making management decisions, then occupancy does appear
to provide a cost‐effective and accurate framework. But if
management decisions require knowledge about abundance,
then occupancy models provide an acceptable framework
only under certain restricted circumstances when density is
sufficient to nearly saturate the landscape or when landscape
covariates effectively aggregate the population and accu-
rately predict occupancy. In particular, a scaled occupancy
approach will be prone to positive bias for a scattered, low‐
density, highly mobile population.

ACKNOWLEDGMENTS

J. E. Wiedenhoeft curated and coordinated collection of
wolf tracking data. J. L. Price Tack and 2 anonymous re-
viewers provided comments and suggestions that sub-
stantially improved the manuscript. This work was funded
by the United States Fish and Wildlife Service Wildlife
Restoration Program.

LITERATURE CITED
Adams, M. J., D. A. W. Miller, E. Muths, P. S. Corn, E. H. C. Grant,
L. L. Bailey, G. M. Fellers, R. N. Fisher, W. J. Sadinski, H. Waddle,
and S. C. Walls. 2013. Trends in amphibian occupancy in the United
States. PLOS ONE 8:e64347.

Ausband, D. E., L. N. Rich, E. M. Glenn, M. S. Mitchell, P. Zager,
D. A. W. Miller, L. P. Waits, B. B. Ackerman, and C. M. Mack. 2014.
Monitoring gray wolf populations using multiple survey methods.
Journal of Wildlife Management 78:335–346.

Chandler, R. B., and J. A. Royle. 2013. Spatially explicit models for in-
ference about density in unmarked or partially marked populations.
Annals of Applied Statistics 7:936–954.

Chen, G., M. Kéry, M. Plattner, K. Ma, and B. Gardner. 2013. Imperfect
detection is the rule rather than the exception in plant distribution
studies. Journal of Ecology 101:183–191.

Crosby, A. D., and W. F. Porter. 2018. A spatially explicit, multi‐scale
occupancy model for large‐scale population monitoring. Journal of
Wildlife Management 82:1300–1310.

de Valpine, P., D. Turek, C. Paciorek, C. Anderson‐Bergman, D. T.
Lang, and R. Bodik. 2019. Programming with models: writing statistical
algorithms for general model structures with NIMBLE. Journal of
Computational and Graphical Statistics 26:403–413.

Denwood, M. J. 2016. runjags: an R package providing interface utilities,
parallel computing methods and additional distributions for MCMC
models in JAGS. Journal of Statistical Software 71. <http://runjags.
sourceforge.net>

Durso, A. M., J. D. Willson, and C. T. Winne. 2011. Needles in hay-
stacks: estimating detection probability and occupancy of rare and cryptic
snakes. Biological Conservation 144:1508–1515.

Efford, M. G., and D. K. Dawson. 2012. Occupancy in continuous habitat.
Ecosphere 3:1–15.

Falke, J. A., L. L. Bailey, K. D. Fausch, and K. R. Bestgen. 2012.
Colonization and extinction in dynamic habitats: an occupancy approach
for a Great Plains stream fish assemblage. Ecology 93:858–867.

Gu, W., and R. K. Swihart. 2004. Absent or undetected? Effects of non‐
detection of species occurrence on wildlife‐habitat models. Biological
Conservation 116:195–203.

Hayes, D. B., and M. J. Monfils. 2015. Occupancy modeling of bird point
counts: implications of mobile animals. Journal of Wildlife Management
79:1361–1368.

Hooten, M. B., and N. T. Hobbs. 2015. A guide to Bayesian model
selection for ecologists. Ecological Monographs 85:3–28.

Horne, J. S., D. E. Ausband, M. A. Hurley, J. Struthers, J. E. Berg, and K.
Groth. 2019. Integrated population model to improve knowledge and
management of Idaho wolves. Journal of Wildlife Management
83:32–42.

Kendall, W. L., and G. C. White. 2009. A cautionary note on substituting
spatial subunits for repeated temporal sampling in studies of site occu-
pancy. Journal of Applied Ecology 46:1182–1188.

Latham, M. C., A. D. M. Latham, N. F. Webb, N. A. McCutchen, and S.
Boutin. 2014. Can occupancy‐abundance models be used to monitor wolf
abundance? PLOS ONE 9:e102982.

Latif, Q. S., M. M. Ellis, and C. L. Amundson. 2016. A broader definition
of occupancy: comment on Hayes and Monfils. Journal of Wildlife
Management 80:192–194.

Linden, D. W., A. K. Fuller, J. A. Royle, and M. P. Hare. 2017.
Examining the occupancy‐density relationship for a low‐density carni-
vore. Journal of Applied Ecology 54:2043–2052.

MacFarland, D. M., and T. R. Van Deelen. 2011. Using simulation to
explore the functional relationships of terrestrial carnivore population
indices. Ecological Modelling 222:2761–2769.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle,
and C. A. Langtimm. 2002. Estimating site occupancy rates when de-
tection probabilities are less than one. Ecology 83:2248–2255.

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B.
Franklin. 2003. Estimating site occupancy, colonization, and local ex-
tinction when a species is detected imperfectly. Ecology 84:2200–2207.

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey,
and J. E. Hines. 2006. Occupancy estimation and modeling. Academic
Press, San Diego, California, USA.

Mladenoff, D. J. 2009. Change in occupied wolf habitat in the Northern
Great Lakes region. Pages 119–138 in A. Wydeven, T. R. van Deelen,

Stauffer et al. • Scaling Occupancy to Abundance 1421

http://runjags.sourceforge.net
http://runjags.sourceforge.net
Adrian Treves



and E. Heske, editors. Recovery of gray wolves in the Great Lakes region
of the United States; an endangered species success story. Springer, New
York, New York, USA.

Montana Fish, Wildlife, and Parks. 2018. Montana gray wolf conservation
and management—2017 Annual report. Montana Fish, Wildlife, and
Parks, Helena, USA.

Mordecai, R. S., B. J. Mattsson, C. J. Tzilkowski, and R. J. Cooper. 2011.
Addressing challenges when studying mobile or episodic species: hier-
archical Bayes estimation of occupancy and use. Journal of Applied
Ecology 48:56–66.

O'Neil, S. T., J. K. Bump, and D. E. Beyer. 2017. Spatially varying density
dependence drives a shifting mosaic of survival in a recovering apex
predator (Canis lupus). Ecology and Evolution 7:9518–9530.

Pacifici, K., B. J. Reich, D. A. W. Miller, B. Gardner, G. Stauffer, S.
Singh, A. McKerrow, and J. A. Collazo. 2017. Integrating multiple data
sources in species distribution modeling: a framework for data fusion.
Ecology 98:840–850.

Pavlacky, D. C., J. A. Blakesley, G. C. White, D. J. Hanni, and P. M.
Lukacs. 2012. Hierarchical multi‐scale occupancy estimation for mon-
itoring wildlife populations. Journal of Wildlife Management
76:154–162.

R Core Team. 2018. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Refsnider, R. L. 2009. The role of the Endangered Species Act in Midwest
wolf recovery. Pages 49–64 in A. Wydeven, T. R. van Deelen, and E.
Heske, editors. Recovery of gray wolves in the Great Lakes region of the
United States; an endangered species success story. Springer, New York,
New York, USA.

Rich, L. N., D. A. W. Miller, H. S. Robinson, J. W. McNutt, and M. J.
Kelly. 2016. Using camera trapping and hierarchical occupancy model-
ling to evaluate the spatial ecology of an African mammal community.
Journal of Applied Ecology 53:1225–1235.

Rich, L. N., R. E. Russell, E. M. Glenn, M. S. Mitchell, J. A. Gude,
K. M. Podruzny, C. A. Sime, K. Laudon, D. E. Ausband, and J. D.
Nichols. 2013. Estimating occupancy and predicting numbers of gray
wolf packs in Montana using hunter surveys. Journal of Wildlife
Management 77:1280–1289.

Royle, J. A., and J. D. Nichols. 2003. Estimating abundance from repeated
presence‐absence data or point counts. Ecology 84:777–790.

Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gardner. 2014. Spatial
capture‐recapture. Academic Press, Waltham, Massachusetts, USA.

Schaub, M., and F. Abadi. 2011. Integrated population models: a novel
analysis framework for deeper insights into population dynamics. Journal
of Ornithology 152:227–237.

Sollmann, R., B. Gardner, A. W. Parsons, J. J. Stocking, B. T.
McClintock, T. R. Simons, K. H. Pollock, and A. F. O'Connell. 2013.
A spatial mark‐resight model augmented with telemetry data. Ecology
94:553–559.

Steenweg, R., M. Hebblewhite, J. Whittington, P. Lukacs, and K.
McKelvey. 2018. Sampling scales define occupancy and underlying
occupancy–abundance relationships in animals. Ecology 99:172–183.

Theil, R. P., W. Hall, E. Heilhecker, and A. P. Wydeven. 2009. An
isolated gray wolf population in central Wisconsin. Pages 107–117 in A.
Wydeven, T. R. van Deelen, and E. Heske, editors. Recovery of gray
wolves in the Great Lakes region of the United States; an endangered
species success story. Springer, New York, New York, USA.

Tyre, A. J., B. Tenhumberg, S. A. Field, D. Niejalke, K. Parris, and H. P.
Possingham. 2003. Improving precision and reducing bias in biological
surveys: estimating false‐negative error rates. Ecological Applications
13:1790–1801.

U.S. Fish and Wildlife Service. 2019. Endangered and threatened wildlife
and plants; removing the gray wolf (Canis lupus) from the list of
endangered and threatened wildlife. Federal Register 84:9648–9687.

Watanabe, S. 2010. Asymptotic equivalence of Bayes cross validation and
widely applicable information criterion in singular learning theory.
Journal of Machine Learning Research 11:3571–3594.

Whittington, J., K. Heuer, B. Hunt, M. Hebblewhite, and P. M. Lukacs.
2015. Estimating occupancy using spatially and temporally replicated
snow surveys. Animal Conservation 18:92–101.

Wiedenhoeft, J. E., S. Walter, N. Kluge, and M. Ericksen‐Pilch. 2019.
Wisconsin gray wolf monitoring report 15 April 2018 through 14 April
2019. Bureau of Wildlife Management, Wisconsin Department of
Natural Resources, Madison, USA.

Wiedenhoeft, J. E., S. Walter, N. S. Libal, and M. Ericksen‐Pilch. 2018.
Wisconsin gray wolf monitoring report 15 April 2017 through 14 April
2018. Bureau of Wildlife Management, Wisconsin Department of
Natural Resources, Madison, USA.

Wisconsin Department of Natural Resources. 1999. Wisconsin wolf manage-
ment plan. Wisconsin Department of Natural Resources, Madison, USA.

Wydeven, A. P., J. E. Wiedenhoeft, R. N. Schultz, R. P. Theil, R. L.
Jurewicz, B. E. Kohn, and T. R. Van Deelen. 2009. History, population
growth, and management of wolves in Wisconsin. Pages 87–105 in A.
Wydeven, T. R. van Deelen, and E. Heske, editors. Recovery of gray
wolves in the Great Lakes region of the United States; an endangered
species success story. Springer, New York, New York, USA.

Yang, L., S. Jin, P. Danielson, C. Homer, L. Gass, S. M. Bender, A. Case,
C. Costello, J. Dewitz, J. Fry, M. Funk, B. Granneman, G. C. Liknes,
M. Rigge, and G. Xian. 2018. A new generation of the United States
National Land Cover Database: requirements, research priorities, design,
and implementation strategies. ISPRS Journal of Photogrammetry and
Remote Sensing 146:108–123.

Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of
biological diversity in space and time. Trends in Ecology & Evolution
16:446–453.

Associate Editor: Ryan Long.

SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article at the publisher's website.

1422 The Journal of Wildlife Management • 85(7)




