

THE WILD FELID MONITOR

The Newsletter of the Wild Felid Research and Management Association

Summer 2022, Volume 16, Issue 1

Human-Wildlife Interactions

Does killing wild carnivores raise risk for domestic animals? Lessons of a Fish & Wildlife Commissioner A New Era of Human-Carnivore Coexistence Wind farms: a new challenge in the conservation of big cats in the Brazilian semiarid region Community-based jaguar conservation in the State of Guerrero, Mexico How can we mitigate puma-livestock conflicts in Central Argentina? Jaguars Without Protection in Western Mexico Carnivores in central Chile: facing a growing peri-urban interface

WFA website: www.wildfelid.org

~ Invited Article ~

Does killing wild carnivores raise risk for domestic animals?

Adrian Treves, PhD, Professor of Environmental Studies, *atreves@wisc.edu* L. Mark Elbroch, Director of the Puma Program, Panthera, *melbroch@panthera.org*

Puma (or mountain lion) lounging in the sun. Photograph by Mark Elbroch / Panthera

People sometimes kill wild carnivores when they are perceived to pose a threat. Typically, that threat can be to people or domesticates. The common presumption underlying such killing is that harming the culprit carnivore will prevent future threats. Yet, some studies of cougars (*Puma concolor*) and gray wolves (*Canis lupus*) suggest the opposite outcome. Namely, that killing one or a few cougars or wolves can raise the risk of future injury or death for cattle or sheep (Peebles et al. 2013, Teichman et al. 2016, Santiago-Avila et al. 2018, Dellinger et al. 2021, Grente 2021); also (Krofel et al. 2011) after reanalysis (Treves et al. 2016) and *C. latrans* (Conner et al. 1998). Although many of these studies used data collected for other purposes, they provided stronger than correlational evidence, because one or more of their analyses controlled for the critical variable of time using a within-subjects analysis (Treves et al. 2016). Among the variables that most commonly confound evaluations of the effectiveness of interventions are location, timing, and the identity of the individuals involved in incidents.

The variability of outcomes reported in these studies mirror results of systematic reviews and meta-analyses that report a range of outcomes of lethal interventions against wild carnivores, with no effect being the most common outcome (Greentree et al. 2000, Treves et al. 2016, Lennox et al. 2018, Moreira-Arce et al. 2018, van Eeden et al. 2018a, van Eeden et al. 2018b, Khorozyan and Waltert 2019, Treves et al. 2019, Khorozyan and Waltert 2020, Khorozyan 2021). These reviews agree on the shortage of robust designs. We need gold standard research designs, such as unbiased, randomized, controlled trials (uRCT) to evaluate lethal interventions against carnivores.

Whether killing carnivores might aggravate risks for livestock is a difficult question to answer because of the rarity of predation. Moreover, more frequent causes of death among domesticates (hereafter domesticates) might be confused for predation (e.g., scavenged after dying of other causes). Numerous other complications exist: the wide areas over which such events occur complicate robust experiments; the long periods before they recur reduce sample sizes and strain time and resources for research; multiple actors in complex interactions challenge inferences about potential effects of lethal intervention. Further, there are ethical obstacles to performing rigorous experimental studies, such as manipulating the vulnerability of animals.

Therefore, we focus on the behavioral factors that would be expected to raise the risk of encounters between carnivores and domesticates. Our approach profits from the much higher rates of encounter than rates of injury or death (Chavez and Gese 2006, Ohrens et al. 2019). We assume that as rates of encounter with predators increase, so too does predation risk for domesticates. That assumption is standard in experimental studies of predator-prey interaction. It also permeates field observations of prey escape behavior in the sense that encounters with real predators trigger antipredator behavior such as vigilance, avoidance, and alarm, even if the predator is not hunting the prey (Lima 1987, Kie 1989, Lima and Dill 1990, Lima 1993;1998).

The correlation between encounter rate and attack rate is not perfect of course. Nevertheless, predator ecologists typically assume individuals are maximizing their encounter rate with prey when the predators are hungry (Schaller 1972, Mitchell and Lima 2002, Hayward and Kerley 2005, Moa et al. 2006). Although the actualized rate of predation is important to owners of domesticates, so is the risk they should avoid. Therefore, killing a carnivore should lower the risk to domesticates, regardless of the successful rate of predation on them.

Here, we articulate four non-exclusive, and likely additive, hypotheses for the biological mechanisms that might explain an increase in the risk to domesticates, following lethal removal of a carnivore. The hypotheses highlight the importance of integrating behavioral ecology into managing conflicts with carnivores (Caro and Durant 1995, Melzheimer et al. 2020).

Hypothesis 1. Lethal removal increases local carnivore density and changes the age-structure of carnivore social networks, which in turn, increase total encounter rates with domesticates.

Lethal removal creates a vacancy on the landscape, and a greater number of new carnivores may immigrate in to fill the void than the number of residents that were removed (Adams et al. 2008, Cooley et al. 2009a, Cooley et al. 2009b). The allure of vacant habitat may also attract residents of neighboring ranges to shift their territories or expand them. Increased carnivore density may also change intraspecific competition dynamics and social networks, discussed below. Often, new immigrants are young animals seeking areas to establish territories (Haber 1996, Adams et al. 2008, Cooley et al. 2009a, Cooley et al. 2009b), as is characteristic of metapopulation dynamics among carnivores. Younger carnivores may exhibit different diets than older animals (African lions, *Panthera leo*, and cougars (Hayward et al. 2007, Elbroch et al. 2017a). Also, younger carnivores may interact more often with people and domesticates (Linnell et al. 1999, Mattson et al. 2011, Peebles et al. 2013).

Hypothesis 2: New carnivores, immigrants or former neighbors, are unfamiliar with the landscape and prey distributions.

Resident carnivores generally prefer wild prey over domestic (Meriggi and Lovari 1996, Moa et al. 2006, Khorozyan et al. 2015). Also, they generally select alternative prey such as domesticates opportunistically as they encounter them (e.g., cougars (Alldredge et al. 2019, Cristescu et al. 2019) and Eurasian *Lynx lynx* (Moa et al. 2006), especially when domesticates are sympatric with a carnivore's primary prey. That does not necessarily imply random encounter rates with domesticates. Patterns of predation on livestock are often highly predictable in space and time (Herfindal et al. 2005, Moa et al. 2006, Kaartinen et al. 2009, Kissling et al. 2009, Treves et al. 2011, Davie et al. 2014, Miller et al. 2015, Treves and Rabenhorst 2017, Melzheimer et al. 2020). Human and dog encounters with wild carnivores may also be predictable in space and time (Mace and Waller 1996, Teichman et al. 2013, Olson et al. 2014). Attacks on domesticates may also be predictable from characteristics of carnivore social networks (Knowlton et al. 1999, Melzheimer et al. 2020). In one study, pack size of wolves was negatively associated with the frequency of attacks on livestock and positively associated with aggressive encounters with hounds (Wydeven et al. 2004).

Carnivores unfamiliar with local prey distributions and activity patterns may search more widely, which may increase encounter rates with alternative prey (Fritts et al. 1985, Linnell et al. 1997). Carnivores exploring new areas may also spend more time near domesticates, reducing the availability of their preferred wild prey relative relative to domesticates (Moa et al. 2006, Khorozyan et al. 2015). Further, we predict livestock are generally easier to locate repeatedly and more vulnerable to attack than wild prey. Therefore, when carnivores experience stress due to unfamiliarity with an area, domesticates may become more attractive. Hungrier cougars, for example, are more likely to forage in suburban areas near people (Blecha et al. 2018). Male Eurasian lynx take more risks by ranging near settlements (Bunnefeld et al. 2006).

Hypothesis 3: Lethal removal destabilizes cooperative relationships and social organization among resident carnivores.

We use social organization to mean the full range of possible relationships from affiliative bonds to avoidance or aggressive interactions and assume these are influenced by individual cognition, personalities and cultures in their families and networks (Hare and Tomasello 2005, MacLean and Hare 2015, Marshall-Pescini et al. 2017). We define instability in the social organization as a disruption of existing relationships necessitating reorganization, assessment, formation of new relationships, and possible aggression. Immigrants into a community, for example, may cause all conspecifics in the locality to expend time and energy to reorganize as animals compete for allies, resources, and dominance. As a result, remaining carnivores may experience injuries and stress due to such encounters. The energy, time, and injuries may combine to require more or different food than the previous stable social network.

Even solitary foragers display a variety of social relationships. Felids exhibit stable, long-lasting relationships, even if individuals spend the majority of their time alone, e.g. cougars (Elbroch et al. 2017b); leopards *P. pardus* (Bailey 1993); domestic cats *Felis catus* (MacDonald et al. 1987), as do their solitary prey (Waser 1974). While the ranging and foraging costs of carnivore group-living are well understood (Wrangham et al. 1993), the ranging and foraging costs for solitary foragers grappling with unstable social networks are not.

Social relationships help carnivores to reproduce, protect young, hunt in a coordinated fashion, or defend a territory used by multiple individuals. Given that the role of the carnivores lethally removed will vary across individuals, so too will the post-removal effects on the social relationships among remaining residents and any new animals that immigrate. For example, resident females that lose a resident male may face new risks of infanticide following the immigration of new males (Pusey and Packer. 1993, Swenson et al. 1997, Packer et al. 2009). Females without young may lose mating opportunities, and either be forced to wait for a suitable male or choose quickly among males of unknown fitness or personality. Dependent young might lose opportunities to learn from a parent (Caro 1987;1989, Treves 2000, Treves et al. 2003, Elbroch and Quigley 2013).

When social carnivores vie as groups (coalitionary aggression), the depletion of a group by loss of a cooperator may lead to escalated competition by rival groups. That may lead rivals to challenge territory, compete for large food patches, monopolize mates, or even search to kill the survivors (Gittleman 1989, Packer et al. 1990). As a result, small coalitions may find themselves displaced or injured by larger coalitions, regardless of sex (Manson and Wrangham 1991, McComb et al. 1994).

Changes in the social environment might necessitate a change in a suite of behaviors for many survivors depending on life history stage, competitive ability, and familiarity with the newly vacant habitat. Some changes may affect communication, e.g., wolves scent-mark differently depending on pack size and breeder status (Peters and Mech 1975, Rothman and Mech 1979). Indeed, cheetahs *Acinonyx jubatus* may congregate at 'hubs' of communication and use of hubs can affect domesticate mortality (Melzheimer et al. 2020). These and other changes may affect individual ranging behavior, and therefore encounter rates with domesticates. Stress and injuries among carnivores in an unstable social network may make domesticates more attractive. Social interactions among carnivores can influence patterns of encounter with people or their property e.g., cheetahs (Melzheimer et al. 2020). Yet, theory about the effects of genetic relatedness or social relationships on carnivore threats remains poorly understood (Linnell et al. 1999), e.g., American black bear, *Ursus americanus* (Breck et al. 2008).

Hypothesis 4: Lethal removal leads to changes in domesticate behavior that makes them more vulnerable to predation.

A change in the rate or identity of carnivores communicating in the habitat of domesticates might be detectable to domesticates. For example, dogs and horses react to the scent of mountain lions. Other domesticates might too. As a result, domesticates may change their own behavior directly or indirectly through owner husbandry. Domesticates may alter their distributions to hide, clump together instead of spread out, or they may avoid specific areas completely. Any change in the behavior of potential prey, potential competitors, or other interacting species may affect their encounter rates with remaining carnivores. Owners of domesticates might detect changes in the behavior of the animals around them. Such detection might lead to changes in the behavior of owners. For example, low-stress livestock-handling, LSLH sensu (Louchouarn and Treves in review Biorxiv pre-print) aims to detect carnivore sign or detect the signs of anxiety in cattle and sheep. The manager practicing LSLH should then promote behaviors that reduce the risk of encounter or attack by wild carnivores (Stone et al. 2017). The converse may also occur. Some husbandry raises the risk of encounter or attack, such as pitting hounds against carnivores (Wydeven et al. 2004, Olson et al. 2014), grazing in wild areas, disposal of attractants such as carcasses in wild habitat, etc. If the carnivores are newcomers or recent instability has changed their defensiveness, the results could be higher encounter or attack rates than before.

If more than one of the conditions predicted in the above four hypotheses are met, we expect additive or multiplicative effects raising encounter rates with domesticates and predation risk for them.

Conclusions

The easy assumption that killing always solves a problem is no longer tenable in general terms as we summarized in the Introduction. Too much counter-evidence exists. The number of variables we have exposed here argues against simplistic inferences.

Human-induced mortality very likely has the same or similar effects on carnivore social organization as any other cause of death, but is much more frequent (Woodroffe and Ginsberg 1998, Wydeven et al. 2001, Treves et al. 2017). Also, human-caused mortality has an added ingredient that not all other causes of death share. Namely, humans and their domesticates are often among the species interacting with surviving carnivores. Repeated lethal removal may result in additive or super-additive effects on carnivore social organization and behavior. For example, male cougars exhibit greater home range overlap in heavily hunted populations (Maletzke et al. 2014), which may increase opportunities for intraspecific aggression that further destabilizes carnivore social networks.

Scientific evaluation of the local-scale effects of killing wild carnivores will require rigorous measurement of the behaviors and abundances of newcomers and survivors. Such studies would ideally compare before-and-after interventions and compare between affected and unaffected social networks. These studies will likely require fine spatial information on the distribution and abundance of domesticates. No wonder we still cannot answer the question in the title of this paper.

Nevertheless, the 100-year debate about the effects of carnivore-removal examined at a population-scale shows there is no substitute for an experimental approach at the scale of social networks and domesticate herds.

Also, because theory predicts prey facing multiple predators will behave differently than those facing a single species (Lima 1992), we call for additional study in intact ecosystems. Beyond our scope is the question whether killing a dominant carnivore leads subordinate carnivores of different species to prey on domesticates more than did the one removed. That perverse outcome was suggested 64 years ago (Newby and Brown 1958, Nattrass et al. 2019). When large carnivores were eliminated, circumstantial evidence suggests mesopredators benefited (Prugh et al. 2009). Yet, local mesopredator release is not always detectable (Crooks and Soulé 1999, Krofel et al. 2007, Allen et al. 2016, Crimmins and Van Deelen 2019). In systems with multiple large carnivores, even dominant individuals or groups may be affected by the presence of other species that individually or in groups can challenge dominants (e.g., leopards by tigers Harihar et al. 2011; (Seidensticker 1983); cougars by wolves (Elbroch et al. 2020, Elbroch and Kusler 2017); *grizzlies U. arctos* by wolves (Smith et al. 2003). Alongside the research recommendations we made above, we see management and policy recommendations.

Killing a carnivore should not be attempted without first considering the costs and benefits for all survivors. When a decision to kill is taken, the identity of the offending animals should be ascertained with great confidence lest a nonculprit be removed. One way to address the uncertainties we summarized here is for authorities to monitor the aftereffects of killing a carnivore among all the involved animals just as one measures the effects of an experimental manipulation on all subjects. Reporting the effects to the public is essential to avoid mistrust of agencies.

Given the tremendous uncertainty about killing wild carnivores, a prudent choice is not to kill but instead to select proven non-lethal methods. There are many such proven by randomized, controlled trials. Currently non-lethal methods have been tested with higher standards than have lethal (Treves et al. 2016, van Eeden et al. 2018a, Treves et al. 2019, Khorozyan and Waltert 2020, Khorozyan 2021). Lethal methods face the same burden of proof but have not been adequately tested by experimentation. Therefore, the balance of benefits minus costs weighs in favor of proven non-lethal methods currently.

Non-lethal methods for predator deterrence have been found effective in numerous situations using uRCTs. We summarize a few trials on wild felids: studded collars on cattle against leopards (Khorozyan et al. 2020); painted eye-spots on cattle versus African lions (Radford et al. 2020); low-stress handling by 'range riders' for cattle facing cougars (Louchouarn and Treves in review Biorxiv pre-print); electric fencing to protect fallow deer from Eurasian lynx (Angst 2001). The higher standard of inference used in studies of non-lethal methods have yielded additional insights. In two cases, non-lethal deterrents did not work or even attracted wild carnivores (a light device to protect pigs from nocturnal predation by red foxes *Vuples vulpes* (Hall and Fleming 2021). The same model of lights seemed to attract Andean foxes *Lycalopex culpaeus* to camelids and sheep yet deter cougars in the same habitat (Ohrens et al. 2019). Combining live-stock defenses has been advocated for decades (Linhart 1981, Shivik 2006, Stone et al. 2017). One might argue that le-thal methods are invariably paired with one or more protective husbandry methods, so if the killing is not effective the husbandry may succeed. That argument begs an experimental test.

We also call for a clearer conceptual separation between scales of analysis. Predation is exhibited by individual carnivores or social groups therefore its prevention should be measured at that scale. The social network of carnivores is also the appropriate scale of analysis for evaluating the effect of interventions to protect domesticates. Although one occasionally sees effects at population scales when people kill a relatively small number of individuals (Loveridge et al. 2007, Chapron and Treves 2016;2017), there are several reasons to expect such cases to be rare. For example, the number of intervening variables expands along with spatiotemproal scale. Also, the potentially, confounding effects of nuisance variables expand. Generally in science, one gains stronger inference about effects when one studies causal mechanisms at the scale on which they act.

Our thoughts here diverge from common practice in western wildlife management which tends to focus on population or sub-population scales within a jurisdiction. The dismissal of the relevance of individuals is a value judgment not a scientific conclusion. Indeed, we summarize abundant evidence that wildlife management should be steeped in behavioral ecology, especially when interventions against individuals or social networks are contemplated. Coexistence is an individual matter.

~ Literature Cited in this Issue ~

- 1989. Determinants of asociality in felids. Pages 41-74 in V. Standen, and R. A. Foley, editors. Comparative Socioecology: The Behavioural Ecology of Humans and Other Mammals. Blackwell Scientific, Oxford.
- 1992. Life in a multi-predator environment: Some considerations for anti-predatory vigilance. Ann Zool Fennici 29:217-226.
- 1993. Ecological and evolutionary perspectives on escape from predatory attack: A survey of North American birds. The Wilson Bulletin 105:1-47.
- 1998. Stress and decision-making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. Advances in the Study of Behavior 27:215-290.
- 2017. Reply to comments by Olson et al. 2017 and Stien 2017. Proceedings of the Royal Society B 284:20171743.
- 2020. Variation and conservation implications of the effectiveness of anti-bear interventions. Scientific Reports 10,:15341.
- Adams, L. G., et al. 2008. Population dynamics and harvest characteristics of wolves in the Central Brooks Range, Alaska Wildlife Monographs 170:1-25.
- Alldredge, M. W., et al. 2019. Human–Cougar Interactions in the Wildland–Urban Interface of Colorado's Front Range. Ecology and Evolution 9:1–17.
- Allen, B. L., et al. 2016. Does lethal control of top-predators release mesopredators? A re-evaluation of three Australian case studies. Ecological Management & Restoration 15:193-195.
- Allen, M. L., et al. 2021. Can't bear the competition: Energetic losses from kleptoparasitism by a dominant scavenger may alter foraging behaviors of an apex predator. Basic and Applied Ecology 51:1–10. Elsevier GmbH. https://doi.org/10.1016/j.baae.2021.01.011>.
- Angst, C. 2001. Electric fencing of fallow deer enclosures in Switzerland--a predator-proof method. Carnivore Damage Prevention News 3:8-9.
- Arriaga, L., et al. 2000. Regiones Terrestres Prioritarias de México. CONABIO. 611 p.
- Astete, S., Marinho-Filho, J., Machado, R. B., Zimbres, B., Jácomo, A. T. A., Sollmann, R., Tôrres, N. M., and L. Silveira. 2017. Living in extreme environments: Modeling habitat suitability for jaguars, pumas, and their prey in a semiarid habitat. Journal of Mammalogy 98:184–474.
- Astorga Arancibia, F. (2015). Free-ranging dogs in central Chile: Emerging threats to public health, wildlife, and the human dimensions behind the problem (Doctoral dissertation, Universidad Andrés Bello).
- Azevedo, F. C., et al. 2013. Avaliação do risco de extinção da Onça parda *Puma concolor* (Linnaeus, 1778) no Brasil. Biodiversidade Brasileira 3:107-121.
- Baerwald, E. F., et al. 2008. Barotrauma is a significant cause of bat fatalities at wind turbines. Current biology, 18(16):R695-R696.
- Bailey, T. N. 1993. The African Leopard: Ecology and Behavior of a Solitary Felid. Columbia University Press, New York.
- Baker, A. D., and Leberg, P. L. (2018). Impacts of human recreation on carnivores in protected areas. PLoS One, 13(4), e0195436.
- Beisiegel, B. M. 2017. Cumulative environmental impacts and extinction risk of Brazilian carnivores. Oecologia Australis 21:350– 360.
- Bennun, L., et al. 2021. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers. IUCN, Gland, Switzerland; The Biodiversity Consultancy, Cambridge, UK.
- Benson J.F., et al. 2020. Survival and competing mortality risks of mountain lions in a major metropolitan area. Biological Conservation 241:108294 https://doi.org/10.1016/j.biocon.2019.108294.
- Benson, J. F., et al. 2021. Mountain lions reduce movement, in-

crease efficiency during the Covid-19 shutdown. *Ecological Solutions and Evidence*, 2, e12093. https://doi.org/10.1002/2688-8319.12093.

- Blaum, N., et al. (2007). Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands. Acta Oecologica, 31(1), 86-92.
- Blecha, K. A., et al. 2018. Hunger Mediates Apex Predator's Risk Avoidance. Journal of Animal Ecology 87:609-622.
- Breck, S. W., et al. 2008. Using genetic relatedness to investigate the development of conflict behavior in black bears Journal of Mammalogy 89:428-434.
- Brook, L. A., et al. 2012. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. Journal of applied ecology, 49(6), 1278-1286.
- Brunet, M., et al. 2022. Cats and dogs: A mesopredator navigating risk and reward provisioned by an apex predator. *Ecology and Evolution*, *12*(e8641), 1–15.
- Bruskotter, J.T. et al. 2022. Beyond game management: toward a more inclusive ethic for wildlife conservation. School of Environment and Natural Resources, The Ohio State University. DOI: 10.13140/RG.2.2.13989.58085.
- Buchhorn, M., et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe 2020.
- Bunnefeld, N., et al. 2006. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: effects of sex and reproductive status Journal of Zoology 270:31-39.

• Caro, T. M. 1987. Cheetah mothers' vigilance: Looking out for prey or for predators? Behavioral Ecology and Sociobiology 20:351-361.

• Caro, T. M., and S. M. Durant. 1995. The importance of behavioral ecology for conservation biology: Examples from Serengeti carnivores. Pages 451-472 *in* A. R. E. Sinclair, and P. Arcese, editors. Serengeti II: Dynamics, Management and Conservation of an Ecosystem. University of Chicago Press, Chicago.

• Caruso, N., et al. 2015. Modelling the ecological niche of an endangered population of *Puma concolor*: first application of the GNESFA method to an elusive carnivore. Ecological Modelling 297: 11-19.

- Ceballos, et al. 2018. Corredores biológicos y áreas prioritarias para la conservación del jaguar en México. Alianza Nacional para la Conservación del Jaguar, México.
- Ceballos, G., et al. 2021. Beyond words: From jaguar population trends to conservation and public policy in Mexico. PLoS ONE, 16 (10), e0255555.
- Chapron, G., and A. Treves. 2016. Blood does not buy goodwill: allowing culling increases poaching of a large carnivore. Proceedings of the Royal Society B 283:20152939.
- Chavez, A. S., and E. M. Gese. 2006. Landscape use and movements of wolves in relation to livestock in a wildland–agriculture matrix Journal of Wildlife Management 70:1079-1086.
- Clapp, J. G., et al. 2022. Multi model application informs prey composition of mountain lions Puma concolor. Wildlife Biology. https:// doi.org/10.1002/wlb3.01035
- Clapp, J. G., et al. 2021. GPSeqClus: An R package for sequential clustering of animal location data for model building, model application and field site investigations. *Methods in Ecology and Evolution*, 12(5), 787–793. https://doi.org/10.1111/2041-210X.13572
- Concone, H. V. B., et al. 2018. A mosaic of protected areas in Brazil: bringing new hope for jaguars. Wild Felid Monitor 11:23–23.
- Conner, M. M., et al. 1998. Effect of coyote removal on sheep depredation in northern California. Journal of Wildlife Management 62:690-699.

- Cooley, H. S., et al. 2009a. Source populations in carnivore management: cougar demography and emigration in a lightly hunted population. Animal Conservation 12:321-328.
- Cooley, H. S., et al. 2009b. Does hunting regulate cougar populations? A test of the compensatory mortality hypothesis. Ecology 90:2913-2921.
- Crimmins, S., and T. R. Van Deelen. 2019. Limited evidence for mesocarnivore release following wolf recovery in Wisconsin, USA. Wildlife Biology 1:1-7.
- Cristescu, B., S. et al. 2019. Habitat selection when killing primary versus alternative prey species supports prey specialization in an apex predator. Journal of Zoology doi:10.1111/jzo.12718:1-10.
- Curras, M., et al. 2021. Perceived risk structures the space use of
 competing carnivores. Behavioral Ecology, 32(6), 1380-1390.
- Davie, H. S., et al. 2014. Measuring and mapping the influence of landscape factors on livestock predation by wolves in Mongolia. Journal of Arid Environments 103:http://dx.doi.org/10.1016/ j.jaridenv.2014.1001.1008.
- Dellinger, J. A., et al. 2021. Temporal trend and drivers of mountain lion depredation in California. Human -Wildlife Interactions 15:162-177.
- Dellinger, J. A., et al. 2021. Temporal trends and drivers of mountain lion depredation in California, USA. Human-Wildlife Interactions 15:1–16.
- Dias, D. D. M., et al. 2019. Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga.
 Biotropica, 51(2): 253-265.
- Dias, D. D. M., et al. 2019. Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga. Biotropica 51:253-265.
- Doerr, V. A., et al. 2011. Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. Journal of Applied Ecology 48(1): 143-147.
- Ehlers Smith, Y. C. 2016. Assessing anthropogenic impacts on the persistence of forest mammals within the Indian Ocean coastal belt of southern KwaZulu-Natal province (Doctoral dissertation).
- Eklund, A., et al. 2017. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Scientific reports 7(1):1-9.
- Eklund, A., López-Bao, et al. 2017. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Scientific Reports 7: 2097.
- Elbroch, L. M., and A. L. Kusler. 2017. Are pumas subordinate carnivores, and does it matter? PeerJ 6:e4293.
- Elbroch, L. M., and H. B. Quigley. 2013. Observations of wild cougar kittens with live prey: implications for learning and survival. Canadian Field Naturalist 26:333-335.
- Elbroch, L. M., et al. 2017a. Stage-dependent puma predation on dangerous prey. Journal of Zoology 302:164-170.
- Elbroch, L. M., et al. 2017b. Adaptive social behaviors in a solitary carnivore. Science Advances 3:e1701218.
- Elbroch, L., et al. 2020. Reintroduced wolves and hunting limit the abundance of a subordinate apex predator in a multi-use landscape. Proceedings of the Royal Society B 287:e20202202.
- EPE [Empresa de Pesquisa Energética]. 2021. Plano Decenal de Expansão de Energia 2030. MME/EPE, Brasília, Brasil. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2030. Accessed 09 Dec 2021.
- Esteves, C. F., and C. B. Campos. 2018. Jaguar and puma ecology in areas of conservation priority in the Caatinga of Northeastern Brazil *in* IV Congreso Latinoamericano y VIII Congreso Boliviano de Mastozoología. Red Boliviana de Mastozoología, 10 – 15 July 2018, La Paz, Bolivia.
- Farris, Z. J., et al. 2017. Threats to a rainforest carnivore community: A multi-year assessment of occupancy and co-occurrence in Madagascar. Biological Conservation, (210): 116-124.

- Ferreira, J. P., et al. 2011. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS One, 6(10), e25970.
- Fiske, I., and Chandler, R. 2015. Overview of unmarked: an R package for the analysis of data from unmarked animals. Available at: file: https://cran. rproject. org/web/packages/unmarked/vignettes/ unmarked. pdf.
- Fritts S. C. et al. 1985. Can relocated wolves survive? Wildlife Society Bulletin 13:459-463.
- Fuller, A., et al. 2021. How dryland mammals will respond to climate change: the effects of body size, heat load and a lack of food and water. Journal of Experimental Biology, 224:1–11.
- Gammons, D. J., et al. 2021. Predation impedes recovery of Sierra Nevada bighorn sheep. California Fish and Wildlife Journal 444–470.
- Garde, E., et al. 2022. A Review and Analysis of the National Dog Population Management Program in Chile. Animals, 12(3), 228.
- Geldmann, J., et al. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230-238.
- Gittleman, J. L. 1989. Carnivore group living: Comparative trends. Pages 183-207 *in* J. L. Gittleman, editor. Carnivore Behavior, Ecology and Evolution, vol. 1. Comstock Assocs, Ithaca.
- Global Biodiversity Outlook 5. 2020 United Nations Convention on Biological Diversity. Montreal, Canada. Accessed April 2022, https: www.cbd.int/gbo5
- Gompper, M. E. 2014. The dog-human-wildlife interface: assessing the scope of the problem. Free-ranging dogs and wildlife conservation.
- González-Reyes, Á. 2016. Ocurrencia de eventos de sequías en la ciudad de Santiago de Chile desde mediados del siglo XIX. Revista de Geografía Norte Grande, (64), 21-32.

• Greentree, C., G. et al. 2000. Lamb predation and fox control in south-eastern Australia. Journal of Applied Ecology 37:935-943.

• Grente, O. 2021. résentation des objectifs et de la méthodologie de la thèse sur l'efficacité des tirs de loup et la gestion adaptative du loup, menée conjointement par l'ONCFS et le CEFE. Gières, France.

• Guarda, N., et al. 2017. Puma Puma concolor density estimation in the Mediterranean Andes of Chile. Oryx, 51(2), 263-267.

- Guerisoli, M., et al. 2017. Characterization of puma–livestock conflicts in rangelands of central Argentina. Royal Society Open Science 4: 170852.
- Haber, G. C. 1996. Biological, conservation, and ethical implications of exploiting and controlling wolves. Conservation Biology 10:1068-1081.
- Hall, K., and P. A. Fleming. 2021. In the spotlight: can lights be used to mitigate fox predation in a free-range piggery? Applied Animal Behaviour Science 2:105420.
- Hare, B., and M. Tomasello. 2005. Human-like social skills in dogs? TRENDS in Cognitive Sciences 9:439-444.
- Hayward, M. W., and G. I. H. Kerley. 2005. Prey preferences of the lion (Panthera leo). Journal of Zoology 207:309-322.
- Hayward, M. W., et al. 2007. Testing predictions of the prey of the lion (Panthera leo) derived from modelled prey preferences. Journal of Wildlife Management 71:1567–1575.
- Helldin, J. O., et al. 2012. The impacts of wind power on terrestrial mammals. Swedish Environmental Protection Agency (Report 6510). Stockholm, Sweden.
- Herfindal, I., et al. 2005. Does recreational hunting of lynx reduce depredation losses of domestic sheep? Journal of Wildlife Management 69:1034-1042.
- Holinda, D. et al. 2020. Effects of scent lure on camera trap detections vary across mammalian predator and prey species. PloS one, 15(5), e0229055.

- Hughes, J., and Macdonald, D. W. (2013). A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157, 341-351.
- INE; Instituto Nacional de Estadísticas de Chile (2017). Censo de Población y Vivienda año 2017. Santiago, Chile.
- Jiménez, V., et al. 2018. Normalización del modelo neoliberal de expansión residencial más allá del límite urbano en Chile y España. EURE (Santiago), 44(132): 27-46.
- Kaartinen, S., et al. 2009. Carnivore-livestock conflicts: determinants
 of wolf (Canis lupus) depredation on sheep farms in Finland. Biodiversity and Conservation 18:3503-3517.
- Karanth, K. U., et al. 2004. Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences, 101(14): 4854-4858.
- Kays, R., et al. 2020. An empirical evaluation of camera trap study
 design: how many, how long, and when? Methods in Ecology and Evolution.
- Khorozyan, I. 2021. Defining practical and robust study designs for interventions targeted at terrestrial mammalian predators. Conservation Biology in press:1–11.
- Khorozyan, I., A. Ghoddousi, M. Soofi, and M. Waltert. 2015. Big cats kill more livestock when wild prey reaches a minimum threshold. Biological Conservation 1925. 268–275.
- Khorozyan, I., and M. Waltert. 2019. How long do anti-predator interventions remain effective? Patterns, thresholds and uncertainty. Royal Society Open Science 6.
- Khorozyan, I., et al. 2020. Studded leather collars are very effective in protecting cattle from leopard (*Panthera pardus*) attacks.
- Kie, J. G. 1989. Optimal foraging and risk of predation: effects on behavior and social structure in ungulates. Journal of Mammalogy 80:1114-1129.
- King, T. W., et al. 2021. The influence of spatial and temporal scale on the relative importance of biotic vs. abiotic factors for species distributions. Diversity and Distributions, 27(2): 327-343.
- Kissling, W. D., et al. 2009. Spatial risk assessment of livestock exposure to pumas in Patagonia, Argentina. Ecography 32:807-817.
- Knowlton, F. F., et al. 1999. Coyote depredation control: An interface between biology and management. Journal of Range Management 52:398-412.
- Krauze-Gryz, D., et al. 2012. The good, the bad, and the ugly: space use and intraguild interactions among three opportunistic predators—cat (Felis catus), dog (Canis lupus familiaris), and red fox (Vulpes vulpes)—under human pressure. Canadian Journal of Zoology, 90(12): 1402-1413.
- Krofel, M., et al. 2007. Golden jackal expansion in Europe: a case of mesopredator release triggered by continent-wide wolf persecution?. Hystrix 28:9-15.
- Krofel, M., R. Černe, and K. Jerina. 2011. Effectiveness of wolf (Canis lupus) culling as a measure to reduce livestock depredations. Acta Silvae et Ligni 95:11-22.
- Kuijper, D. P. et al. 2016. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proceedings of the Royal Society B: Biological Sciences, 283(1841), 20161625.
- Laundré, J. W., and C. Papouchis. 2020. The Elephant in the room: What can we learn from California regarding the use of sport hunting of pumas (Puma concolor) as a management tool? PLoS ONE 15:1–26.
- Lennox, R. J., et al. 2018. Evaluating the efficacy of predator removal in a conflict-prone world. Biological Conservation 224:277-289.
- Leung, D. Y., and Y. Yang. 2012. Wind energy development and its environmental impact: A review. Renewable and Sustainable Energy Reviews. 16:1031-1039.
- Li, X. Y., et al. 2021. Human disturbance and prey occupancy as predictors of carnivore richness and biomass in a Himalayan hotspot. Animal Conservation, 24(1): 64-72.

- Lima, S. L. 1987. Distance to cover, visual obstructions, and vigilance in house sparrows. Behaviour 102:231-238.
- Lima, S. L., and L. M. Dill. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68:619-640.
- Lindenmayer, D. 2019. Small patches make critical contributions to biodiversity conservation. Proceedings of the National Academy of Sciences, 116(3): 717-719.
- Linhart, S. B. 1981. Managing coyote damage problems with nonlethal techniques: Recent advances in research. Proceedings of the Eastern Wildlife Damage Control Conference 1:105-118.
- Linnell, J. D. C., et al. 1999. Large carnivores that kill livestock: do problem individuals really exist? Wildlife Society Bulletin 27:698-705.
- Linnell, J. D. C., et al. 1997. Translocation of carnivores as a method for managing problem animals: a review. Biodiversity and Conservation 6:1245-1257.
- Loss, S. R., et al. 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nature communications, 4(1): 1-8.
- Louchouarn, N. X., and A. Treves. in review Biorxiv pre-print. Lowstress livestock handling protects cattle in a five-predator habitat. https://www.researchsquare.com/article/rs-1061804/v1.
- Loveridge, A. J., et al. 2007. The impact of sport-hunting on the population dynamics of an African lion population in a protected area. Biological Conservation 134:548-558.
- Luja, V.H., et al. 2017. Small Protected Areas as Stepping-Stones for Jaguars in Western Mexico. Tropical Conservation Science, 10, 1 -8.
- Macdonald, D. W., et al. 2018. Multi-scale habitat selection modeling identifies threats and conservation opportunities for the Sunda clouded leopard (*Neofelis diardi*). Biological Conservation, 227: 92-103.

• MacDonald, D. W., et al. 1987. Social dynamics, nursing coalitions and infanticide among farm cats, Felis cattus. *in* W. P. G. M. Burghardt, and W. Wickler, editor. Advances in Ethology. Verlag, Berlin.

• Mace, R. D., and J. S. Waller. 1996. Grizzly bear distribution and human conflicts in Jewel Basin Hiking Area, Swan Mountains, Montana. Wildlife Society Bulletin 24:461-

- 467.
- MacKenzie, D. I., et al. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248-2255.
- MacLean, E. L., and B. Hare. 2015. Dogs hijack the human bonding pathway. Science 348: 280-281.
- Maletzke, B. et al. 2014. Effects of hunting on cougar spatial organization. Ecology and Evolution 4:2178-2185.
- Manson, J. H., and R. W. Wrangham. 1991. Intergroup aggression in chimpanzees and humans. Current Anthropology 32:369-390.
- Marques, J. et al. 2021. O cárcere dos ventos: destruição das serras pelos complexos eólicos. SABEH, Paulo Afonso, Brasil. http://www.sabeh.org.br/?mbdb_book=o-carcere-dos-ventos-destruicaodas-serras-pelos-complexos-eolicos. Accessed 12 Nov 2021.
- Marshall-Pescini, S., et al. 2017. Importance of a species' socioecology: Wolves outperform dogs in a conspecific cooperation task. Proceedings of the National Academy of Sciences 114:11793-11798.
- Martins, C. S. G., et al. 2019. Experiências com mamíferos carnívoros na Caatinga. Pages 31-43 *in* K. Dalazoana, organizer. Desenvolvimento Sustentável do Semiárido Brasileiro. Atena, Ponta Grossa, Brasil. Doi: 10.22533/at.ed.0071925115.
- Mattson, D., et al. 2011. Factors governing risk of cougar attacks on humans. Human–Wildlife Interactions 5:135–158.
- McComb, K., et al. 1994. Roaring and numerical assessment in contests between groups of female lions, *Panthera leo*. Animal Behaviour 47:379-387.

- Melzheimer, J., et al. 2020. Communication hubs of an asocial cat are the source of a human – carnivore conflict and key to its solution. Proceedings of the National Academy of Sciences 117:3325– 33333.
- Meriggi, A., and S. Lovari. 1996. A review of wolf predation in southern Europe: Does the wolf prefer wild prey to livestock? Journal of Applied Ecology 33:1561-1571.
- Michael J. Manfredo et al. 2020. The changing sociocultural context of wildlife conservation. Conservation Biology, Volume 34(6): 1549–1559.
- Miller, J. R. B., et al. 2016. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildlife Society Bulletin 40: 806–815.
- Miller, J. R. B., et al. 2015. Landscape scale accessibility of livestock to tigers: implications of spatial grain for modeling predation risk to mitigate human-carnivore conflict. Ecology and Evolution 5:1354-1367.
- Mitchell, W. A., and S. L. Lima. 2002. Predator-prey shell games: large-scale movement and its implications for decision-making by prey. Oikos 99:249-259.
- Moa, P. F. et al. 2006. Does the spatiotemporal distribution of livestock influence forage patch selection in Eurasian lynx Lynx lynx? . Wildlife Biology 2:63-70.
- Morato, R. G., et al. 2013. Avaliação do risco de extinção da onça pintada *Panthera onca* (Linnaeus, 1758) no Brasil. Biodiversidade Brasileira 3:122-132.
- Moreira-Arce, D., et al. 2018. Management Tools to Reduce Carnivore-Livestock Conflicts: Current Gap and Future Challenges. Rangeland Ecology & Management.
- Morin, D. J., et al. 2018. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Global Ecology and Conservation, 15, e00413.
- Nattrass, N., et al. 2019. Culling recolonizing mesopredators increases livestock losses: Evidence from the South African Karoo. Ambio.
- Newby, F., and R. Brown. 1958. A new approach to predator management in Montana. Montana Wildlife 8:22-27.
- Nickel, B. A., et al. 2021. Energetics and fear of humans constrain the spatial ecology of pumas. Proceedings of the National Academy of Sciences 118:1–8.
- Niedballa, J., et al. 2016. camtrapR: an R package for efficient camera trap data management. Methods in Ecology and Evolution, 7 (12): 1457-1462.
- Nisi A.C., et al. 2021. Temporal scale of habitat selection for large carnivores: balancing energetics, risk and finding prey. *Journal of Animal Ecology*. https://doi.org/10.1111/1365-2656.13613.
- Núñez Vásquez, V. H. 2015. Análisis geográfico de la sequía a resolución diaria en Chile central (V-RM) y su relación con patrones de variabilidad climática de baja frecuencia. Memoria para optar al título profesional de Geógrafo, Universidad de Chile.
- Ohrens, O., C. et al. 2019. Non-lethal defense of livestock against predators: Flashing lights deter puma attacks in Chile. Frontiers in Ecology and the Environment 17:32-38.
- Olson, E. R., et al. 2014. Landscape predictors of wolf attacks on bear-hunting dogs in Wisconsin, USA. Wildlife Research 41:584– 597.
- Packer, C., et al. 1990. Why lions form groups: food is not enough. The American Naturalist 136:1-19.
- Packer, C., et al. 2009. Sport Hunting, Predator Control and Conservation of Large Carnivores. PLos ONE 4:e5941. doi:5910.1371/journal.pone.0005941.
- Peebles, K., et al. 2013. Effects of Remedial Sport Hunting on Cougar Complaints and Livestock Depredations. PLos ONE 8:e79713.
- Peebles, K.A., et al. 2013. Effects of remedial sport hunting on cougar complaints and livestock depredations. PloS one, 8(11), p.e79713.

- Peters, R. P., and L. D. Mech. 1975. Scent marking in wolves. American Scientist 63:628-637.
- Prugh, L. R., C. J. Stoner, C. W. Epps, W. T. Bean, W. J. Ripple, A. S. Laliberte, and J. S. Brashares. 2009. The Rise of the Mesopredator. Bioscience 59:779-791.
- Pusey, A. E., and C. Packer. 1993. Infanticide in lions: Consequences and counter-strategies. Pages Eds_S. Parmigiani, and F. S. von Saal *in* Infanticide and Parental Care. Harwood Academic Press, London.
- Rabinowitz, A. 2014. An indomitable beast: The remarkable journey of the jaguar. Washington, DC: Island Press.
- Radford, C. G., et al. 2020. Artificial eyespots on cattle reduce predation by large carnivores. Communications Biology Nature 3:430.
- Ramesh, T., et al. 2016. Predictors of mammal species richness in KwaZulu-Natal, South Africa. Ecological Indicators, 60: 385-393.
- Rich, L. N., et al. 2017. Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. Global Ecology and Biogeography, 26(8): 918-929.
- Rich, L. N., et al. 2016. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology, 53(4): 1225-1235.
- Riley, S. P. D., et al. 2021. Big Cats in the Big City: Spatial Ecology of Mountain Lions in Greater Los Angeles. Journal of Wildlife Management 85:1527–1542.
- Rothman, R. J., and L. D. Mech. 1979. Scent marking in lone wolves and newly formed pairs. Animal Behaviour 17:750-760.
- Ruiz-Gutiérrez, et al. Mamíferos medianos y grandes de la Sierra Madre del Sur de Guerrero, México: evaluación integral de la diversidad y su relación con las características ambientales. Revista mexicana de Biodiversidad. 91: e913168.
 - SAG; Servicio Agrícola y Ganadero. 2015. Ley de caza y su reglamento. Servicio Agrícola y Ganadero de Chile, División de protección de los recursos naturales renovables.

• Santana Ulloa, R. (1970). Estructura de la ganadería en Chile Central. Revistas de Recursos Naturales de Chile, 57-74.

• Santiago-Avila, F. J., et al. 2018. Killing wolves to prevent predation on livestock may protect one farm but harm neighbors. PLos ONE 13:e0189729

- Schaller, G. B. 1972. The Serengeti Lion: A study of predator-prey relations. University of Chicago Press, Chicago.
- Schulz, J. J., et al. 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Applied Geography, 30(3): 436-447.
- Seidensticker, J. 1983. Predation by Panthera cats and measures of human influence in habitats of South Asian monkeys. International Journal of Primatology 4:323-326.
- Sepúlveda, M., et al. 2015. Fine-scale movements of rural freeranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mammalian Biology, 80(4): 290 -297.
- Serieys, L. E. K., et al. 2021. Road-crossings, vegetative cover, land use and poisons interact to influence corridor effectiveness. Biological Conservation 253:108930. https://doi.org/10.1016/ j.biocon.2020.108930>.
- Seveke, A., et al. 2020. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biological Reviews, 95(6): 1689-1705.
- Seymour, K.L. 1989 Panthera onca. Mammalian species, 340: 1-9.
- Shilling, F., et al. 2021. A Reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biological Conservation 256:109013. https://doi.org/10.1016/j.biocon.2021.109013.
- Shivik, J. A. 2006. Tools for the edge: What's new for conserving carnivores Bioscience 56:253-259.
- Silva J.. et al. 2017. Caatinga: The largest tropical dry forest region in South America. Springer, Cham, Switzerland.

- Silva, A. P., et al. 2017. Climate and anthropogenic factors determine site occupancy in Scotland's Northern Drange badger population: implications of context Dependent responses under environmental change. Diversity and Distributions, 23(6): 627-639.
- Slagle, K., et al. 2017. Attitudes toward predator control in the United States: 1995 and 2014. Journal of Mammalogy. 98(1):7-16.
- Smallwood, K. S., and D. A. Bell. 2020. Effects of wind turbine curtailment on bird and bat fatalities. The Journal of Wildlife Management 84(4):685-696.
- Smith, D. W., et al. 2003. Yellowstone after wolves. Bioscience 53:330-340.
- Stone, S. A., et al. 2017. Adaptive use of nonlethal strategies for minimizing wolf–sheep conflict in Idaho. Journal of Mammalogy 98:33-44.
- Straub, M. H., et al. 2021. Leptospira prevalence and its association with renal pathology in mountain lions (Puma concolor) and bobcats (lynx rufus) in California, USA. Journal of Wildlife Diseases 57:27– 39.
- Sunquist, M. E., and F. C. Sunquist. 2009. Family Felidae. Pages 54-169 *in* Wilson, D. E., and R. A Mittermeier, editors. Handbook of the Mammals of the World. Vol. 1, Carnivores. Lynx Edicions, Barcelona, Spain.
- Swenson, J. E., et al. 1997. Infanticide caused by hunting of male bears. Nature 386:450-451.
- Szlavecz, K., et al. 2011. Biodiversity on the urban landscape. Human Population, pp. 75-101. Springer, Berlin, Heidelberg.
- Teichman, K. J., et al. 2016. Hunting as a management tool? Cougar -human conflict is positively related to trophy hunting. BMC Ecology 16:44, DOI 10.1186/s12898-12016-10098-12894
- Teichman, K. J., et al. 2013. Does Sex Matter? Temporal and Spatial Patterns of Cougar-Human Conflict in British Columbia. PLos ONE 8:e74663.
- Treves, A. 2000. Prevention of infanticide: The perspective of infant primates. P.p. 223-238 *in* a. C. H. J. C. P. van Schaik, editor. Infanticide by Males and its Implications. Cambridge University Press, Cambridge.
- Treves, A. and K.U. Karanth. 2003. Human Carnivore conflict and perspectives on carnivore management worldwide. Conservation biology 17(6):1491-1499.
- Treves, A., et al. 2003. Maternal watchfulness in black howler monkeys (Alouatta pigra). Ethology.
- Treves, A., and M. F. Rabenhorst. 2017. Risk map for wolf threats to livestock still predictive 5 years after construction. PLos ONE 12:e0180043.
- Treves, A., et al. 2017. Mismeasured mortality: correcting estimates of wolf poaching in the United States. Journal of Mammalogy 98:1256–1264.
- Treves, A., et al. 2011. Forecasting environmental hazards and the application of risk maps to predator attacks on livestock. Bioscience 61:451-458.
- Treves, A., et al. 2016. Predator control should not be a shot in the dark. Frontiers in Ecology and the Environment 14(7):380-388.
- Treves, A., et al. 2016. Predator control should not be a shot in the dark. Frontiers in Ecology and the Environment 14:380-388.
- Treves, A., et al. 2019. Predator control needs a standard of unbiased randomized experiments with cross-over design. Frontiers in Ecology and Evolution 7: 402-413.
- Valença, R. B., and E. Bernard. 2015. Another blown in the wind: bats and the licensing of wind farms in Brazil. Natureza e Conservação 13:117-122.
- Van der Weyde, L. K., et al. 2021. Collaboration for conservation: Assessing countrywide carnivore occupancy dynamics from sparse data. Diversity and Distributions.
- van Eeden, L. M., et al. 2018b. Carnivore conservation needs evidence-based livestock protection. PLoS Biology I 16.

- van Eeden, L. M., et al. 2018a. Managing conflict between large carnivores and livestock. Conservation Biology: doi: 10.1111/ cobi.12959.
- Van Eeden, L.M., et al. 2018. Carnivore conservation needs evidence-based livestock protection. PLoS biology, 16(9), p.e2005577.
- Vanak, A. T., and Gompper, M. E. 2009. Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mammal review, 39(4): 265-283.
- Varela, S. L., and Ortiz, S. G. 2020. La Infraestructura Verde como alternativa ante la expansión urbana en Santiago de Chile. Revista de Arquitectura, 12(28): 94-105.
- Villalba, L., et al. 2016. Leopardus jacobita. The IUCN Red List of Threatened Species 2016: e.T15452A50657407.
- Vitekere, K., et al. 2021. Threats to Site Occupation of Carnivores: A Spatiotemporal Encroachment of Non-native Species on the Native Carnivore Community in A Human-dominated Protected Area. Zoological Studies, 60.
- Waser, P. M. 1974. Spatial associations and social interactions in a 'solitary' ungulate: the bushbuck *Tragelaphus scriptus* (Pallas). Zeitschrift fur Tierpsychologie 37:24-36.
- Wielgus, R.B. and K.A. Peebles. 2014. Effects of wolf mortality on livestock depredations. PloS one, 9(12), p.e113505.
- Wierzbowska, I. A., et al. 2016. Predation of wildlife by free-ranging domestic dogs in Polish hunting grounds and potential competition with the grey wolf. Biological Conservation, 201: 1-9.
- Williams, S. T., et al. 2017. Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service?. Ecosystem Services, 30: 362-371.
- Wilmers, C. C., et al. 2021. COVID-19 suppression of human mobility releases mountain lions from a landscape of fear. Current Biology 31:3952-3955.e3. https://doi.org/10.1016/j.cub.2021.06.050>.
 - Wintle, B. A., et al. 2019. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3): 909-914.
 - Wolf, C., and Ripple, W. J. 2017. Range contractions of the world's large carnivores. Royal Society open science, 4 (7): 17-52.
 - Woodroffe, R., and J. R. Ginsberg. 1998. Edge effects and the extinction of populations inside protected areas. Science 280:2126-2128.
- Wrangham, R. W., et al. 1993. Constraints on group size in primates and carnivores: Population density and day range as assays of exploitation competition. Behavioral Ecology and Sociobiology 32:199-210.
- Wydeven, A. P., et al. 2004. Characteristics of wolf packs in Wisconsin: Identification of traits influencing depredation. Pages 28-50 in N. Fascione, A. Delach, and M. E. Smith, editors. People and Predators: From Conflict to Coexistence. Island Press, Washington, D. C.
- Wydeven, A. P., et al. 2001. Road density as a factor in habitat selection by wolves and other carnivores in the Great Lakes Region. Endangered Species Update 18:110-114.
- Young, J. K., et al. 2011. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. BioScience 61 (2) 125-132.
- Yovovich V., et al. 2021. Pumas' fear of humans precipitates changes in plant architecture. Ecosphere 12:e03309. https://doi.org/10.1002/ecs2.3309>
- Zapata-Ríos, G., and Branch, L. C. 2018. Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador. PloS one, 13(2), e0192346.

Guardian dogs that protect sheep from foxes and pumas in Chilean Patagonia. Photograph by Mark Elbroch / Panthera

About the Wild Felid Research and Management Association

The Wild Felid Research and Management Association is open to professional biologists, wildlife managers, and others dedicated to the conservation of wild felid species, with emphasis on those species in the Western Hemisphere. The WFA acts in an advisory capacity to facilitate wild felid conservation, management, and research, public education about wild felids, and functions among various governments, agencies, councils, universities, and organizations responsible or interested in wild felids and their habitats. **Our intention is to:**

- 1. Provide for and encourage the coordination and exchange of information on the ecology, management, and conservation of wild felids;
- 2. Provide liaison with other groups; and,
- 3. Provide a format for conducting workshops, panels, and conferences on research, management and conservation topics related to wild felids.

Our goal:

The goal of the Wild Felid Association is to promote the management, conservation, and restoration of wild felids through sciencebased research, management, and education.

Our objectives:

- 1. Promote and foster well-designed research of the highest scientific and professional standards.
- 2. Support and promote sound stewardship of wild felids through scientifically based population and habitat management.
- 3. Promote opportunities for communication and collaboration across scientific disciplines and among wild felid research scientists and managers through conferences, workshops, and newsletters.
- 4. Increase public awareness and understanding of the ecology, conservation, and management of wild felids by encouraging the translation of technical information into popular literature and other media, and other education forums.
- 5. Encourage the professional growth and development of our members.
- 6. Provide professional counsel and advice on issues of natural resource policy related to wild felid management, research, and conservation.
- 7. Maintain the highest standards of professional ethics and scientific integrity.